|
2023-10-13 16:18:19,873 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 16:18:19,874 Model: "SequenceTagger( |
|
(embeddings): TransformerWordEmbeddings( |
|
(model): BertModel( |
|
(embeddings): BertEmbeddings( |
|
(word_embeddings): Embedding(32001, 768) |
|
(position_embeddings): Embedding(512, 768) |
|
(token_type_embeddings): Embedding(2, 768) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(encoder): BertEncoder( |
|
(layer): ModuleList( |
|
(0-11): 12 x BertLayer( |
|
(attention): BertAttention( |
|
(self): BertSelfAttention( |
|
(query): Linear(in_features=768, out_features=768, bias=True) |
|
(key): Linear(in_features=768, out_features=768, bias=True) |
|
(value): Linear(in_features=768, out_features=768, bias=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(output): BertSelfOutput( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(intermediate): BertIntermediate( |
|
(dense): Linear(in_features=768, out_features=3072, bias=True) |
|
(intermediate_act_fn): GELUActivation() |
|
) |
|
(output): BertOutput( |
|
(dense): Linear(in_features=3072, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
) |
|
) |
|
(pooler): BertPooler( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(activation): Tanh() |
|
) |
|
) |
|
) |
|
(locked_dropout): LockedDropout(p=0.5) |
|
(linear): Linear(in_features=768, out_features=21, bias=True) |
|
(loss_function): CrossEntropyLoss() |
|
)" |
|
2023-10-13 16:18:19,874 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 16:18:19,874 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences |
|
- NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator |
|
2023-10-13 16:18:19,874 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 16:18:19,874 Train: 5901 sentences |
|
2023-10-13 16:18:19,874 (train_with_dev=False, train_with_test=False) |
|
2023-10-13 16:18:19,874 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 16:18:19,874 Training Params: |
|
2023-10-13 16:18:19,874 - learning_rate: "3e-05" |
|
2023-10-13 16:18:19,874 - mini_batch_size: "4" |
|
2023-10-13 16:18:19,874 - max_epochs: "10" |
|
2023-10-13 16:18:19,874 - shuffle: "True" |
|
2023-10-13 16:18:19,874 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 16:18:19,874 Plugins: |
|
2023-10-13 16:18:19,874 - LinearScheduler | warmup_fraction: '0.1' |
|
2023-10-13 16:18:19,874 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 16:18:19,874 Final evaluation on model from best epoch (best-model.pt) |
|
2023-10-13 16:18:19,874 - metric: "('micro avg', 'f1-score')" |
|
2023-10-13 16:18:19,874 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 16:18:19,875 Computation: |
|
2023-10-13 16:18:19,875 - compute on device: cuda:0 |
|
2023-10-13 16:18:19,875 - embedding storage: none |
|
2023-10-13 16:18:19,875 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 16:18:19,875 Model training base path: "hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2" |
|
2023-10-13 16:18:19,875 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 16:18:19,875 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 16:18:26,876 epoch 1 - iter 147/1476 - loss 2.68811671 - time (sec): 7.00 - samples/sec: 2530.06 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-13 16:18:33,935 epoch 1 - iter 294/1476 - loss 1.63436810 - time (sec): 14.06 - samples/sec: 2556.09 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-13 16:18:40,951 epoch 1 - iter 441/1476 - loss 1.24746196 - time (sec): 21.07 - samples/sec: 2466.58 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-13 16:18:48,209 epoch 1 - iter 588/1476 - loss 1.01857941 - time (sec): 28.33 - samples/sec: 2425.58 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-13 16:18:55,376 epoch 1 - iter 735/1476 - loss 0.88100047 - time (sec): 35.50 - samples/sec: 2410.76 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-13 16:19:02,343 epoch 1 - iter 882/1476 - loss 0.77829880 - time (sec): 42.47 - samples/sec: 2408.70 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-13 16:19:09,239 epoch 1 - iter 1029/1476 - loss 0.70303474 - time (sec): 49.36 - samples/sec: 2402.58 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-13 16:19:15,979 epoch 1 - iter 1176/1476 - loss 0.64928259 - time (sec): 56.10 - samples/sec: 2376.92 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-13 16:19:22,808 epoch 1 - iter 1323/1476 - loss 0.60030866 - time (sec): 62.93 - samples/sec: 2378.25 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-13 16:19:29,670 epoch 1 - iter 1470/1476 - loss 0.56005280 - time (sec): 69.79 - samples/sec: 2376.48 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-13 16:19:29,929 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 16:19:29,929 EPOCH 1 done: loss 0.5590 - lr: 0.000030 |
|
2023-10-13 16:19:36,108 DEV : loss 0.12960338592529297 - f1-score (micro avg) 0.7114 |
|
2023-10-13 16:19:36,137 saving best model |
|
2023-10-13 16:19:36,590 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 16:19:43,259 epoch 2 - iter 147/1476 - loss 0.14371163 - time (sec): 6.67 - samples/sec: 2282.89 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-13 16:19:50,126 epoch 2 - iter 294/1476 - loss 0.14687695 - time (sec): 13.53 - samples/sec: 2321.77 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-13 16:19:56,916 epoch 2 - iter 441/1476 - loss 0.14324943 - time (sec): 20.33 - samples/sec: 2350.40 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-13 16:20:03,828 epoch 2 - iter 588/1476 - loss 0.13800148 - time (sec): 27.24 - samples/sec: 2341.03 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-13 16:20:10,771 epoch 2 - iter 735/1476 - loss 0.14220914 - time (sec): 34.18 - samples/sec: 2310.96 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-13 16:20:17,816 epoch 2 - iter 882/1476 - loss 0.14051112 - time (sec): 41.22 - samples/sec: 2330.35 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-13 16:20:25,068 epoch 2 - iter 1029/1476 - loss 0.13606559 - time (sec): 48.48 - samples/sec: 2361.19 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-13 16:20:31,924 epoch 2 - iter 1176/1476 - loss 0.13105034 - time (sec): 55.33 - samples/sec: 2366.25 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-13 16:20:38,969 epoch 2 - iter 1323/1476 - loss 0.13230912 - time (sec): 62.38 - samples/sec: 2373.34 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-13 16:20:46,152 epoch 2 - iter 1470/1476 - loss 0.13197270 - time (sec): 69.56 - samples/sec: 2380.76 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-13 16:20:46,430 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 16:20:46,431 EPOCH 2 done: loss 0.1321 - lr: 0.000027 |
|
2023-10-13 16:20:57,635 DEV : loss 0.14676305651664734 - f1-score (micro avg) 0.7483 |
|
2023-10-13 16:20:57,663 saving best model |
|
2023-10-13 16:20:58,251 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 16:21:05,130 epoch 3 - iter 147/1476 - loss 0.07375163 - time (sec): 6.88 - samples/sec: 2256.94 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-13 16:21:12,085 epoch 3 - iter 294/1476 - loss 0.08555357 - time (sec): 13.83 - samples/sec: 2339.15 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-13 16:21:18,976 epoch 3 - iter 441/1476 - loss 0.08707338 - time (sec): 20.72 - samples/sec: 2346.38 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-13 16:21:25,687 epoch 3 - iter 588/1476 - loss 0.08703905 - time (sec): 27.43 - samples/sec: 2337.30 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-13 16:21:32,780 epoch 3 - iter 735/1476 - loss 0.08725903 - time (sec): 34.53 - samples/sec: 2362.45 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-13 16:21:39,920 epoch 3 - iter 882/1476 - loss 0.08502530 - time (sec): 41.67 - samples/sec: 2401.73 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-13 16:21:46,866 epoch 3 - iter 1029/1476 - loss 0.08313622 - time (sec): 48.61 - samples/sec: 2388.85 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-13 16:21:53,843 epoch 3 - iter 1176/1476 - loss 0.08509026 - time (sec): 55.59 - samples/sec: 2410.45 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-13 16:22:00,456 epoch 3 - iter 1323/1476 - loss 0.08340603 - time (sec): 62.20 - samples/sec: 2415.55 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-13 16:22:07,228 epoch 3 - iter 1470/1476 - loss 0.08513356 - time (sec): 68.97 - samples/sec: 2404.08 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-13 16:22:07,489 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 16:22:07,489 EPOCH 3 done: loss 0.0851 - lr: 0.000023 |
|
2023-10-13 16:22:18,604 DEV : loss 0.1558631807565689 - f1-score (micro avg) 0.8021 |
|
2023-10-13 16:22:18,632 saving best model |
|
2023-10-13 16:22:19,132 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 16:22:25,971 epoch 4 - iter 147/1476 - loss 0.05321490 - time (sec): 6.84 - samples/sec: 2228.72 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-13 16:22:32,717 epoch 4 - iter 294/1476 - loss 0.05088317 - time (sec): 13.58 - samples/sec: 2289.73 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-13 16:22:39,592 epoch 4 - iter 441/1476 - loss 0.05582560 - time (sec): 20.46 - samples/sec: 2337.16 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-13 16:22:46,278 epoch 4 - iter 588/1476 - loss 0.05853689 - time (sec): 27.14 - samples/sec: 2329.23 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-13 16:22:53,495 epoch 4 - iter 735/1476 - loss 0.05804754 - time (sec): 34.36 - samples/sec: 2325.70 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-13 16:23:00,651 epoch 4 - iter 882/1476 - loss 0.05583338 - time (sec): 41.52 - samples/sec: 2346.35 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-13 16:23:07,936 epoch 4 - iter 1029/1476 - loss 0.05481177 - time (sec): 48.80 - samples/sec: 2384.46 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-13 16:23:14,776 epoch 4 - iter 1176/1476 - loss 0.05475217 - time (sec): 55.64 - samples/sec: 2389.60 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-13 16:23:21,862 epoch 4 - iter 1323/1476 - loss 0.05730543 - time (sec): 62.73 - samples/sec: 2386.95 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-13 16:23:28,584 epoch 4 - iter 1470/1476 - loss 0.05764999 - time (sec): 69.45 - samples/sec: 2386.25 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-13 16:23:28,863 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 16:23:28,864 EPOCH 4 done: loss 0.0578 - lr: 0.000020 |
|
2023-10-13 16:23:40,076 DEV : loss 0.18168844282627106 - f1-score (micro avg) 0.803 |
|
2023-10-13 16:23:40,104 saving best model |
|
2023-10-13 16:23:40,595 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 16:23:47,639 epoch 5 - iter 147/1476 - loss 0.05535559 - time (sec): 7.04 - samples/sec: 2350.97 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-13 16:23:54,732 epoch 5 - iter 294/1476 - loss 0.04177522 - time (sec): 14.14 - samples/sec: 2354.73 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-13 16:24:01,904 epoch 5 - iter 441/1476 - loss 0.04295503 - time (sec): 21.31 - samples/sec: 2362.66 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-13 16:24:09,007 epoch 5 - iter 588/1476 - loss 0.03870174 - time (sec): 28.41 - samples/sec: 2337.31 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-13 16:24:15,872 epoch 5 - iter 735/1476 - loss 0.03947753 - time (sec): 35.28 - samples/sec: 2340.03 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-13 16:24:22,622 epoch 5 - iter 882/1476 - loss 0.04215224 - time (sec): 42.03 - samples/sec: 2333.54 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-13 16:24:29,595 epoch 5 - iter 1029/1476 - loss 0.04176081 - time (sec): 49.00 - samples/sec: 2334.66 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-13 16:24:36,904 epoch 5 - iter 1176/1476 - loss 0.04176508 - time (sec): 56.31 - samples/sec: 2359.18 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-13 16:24:44,014 epoch 5 - iter 1323/1476 - loss 0.04105383 - time (sec): 63.42 - samples/sec: 2376.53 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-13 16:24:50,709 epoch 5 - iter 1470/1476 - loss 0.04223612 - time (sec): 70.11 - samples/sec: 2365.53 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-13 16:24:50,971 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 16:24:50,972 EPOCH 5 done: loss 0.0421 - lr: 0.000017 |
|
2023-10-13 16:25:02,159 DEV : loss 0.17941001057624817 - f1-score (micro avg) 0.8126 |
|
2023-10-13 16:25:02,189 saving best model |
|
2023-10-13 16:25:02,695 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 16:25:09,753 epoch 6 - iter 147/1476 - loss 0.02653020 - time (sec): 7.06 - samples/sec: 2115.54 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-13 16:25:16,999 epoch 6 - iter 294/1476 - loss 0.02862818 - time (sec): 14.30 - samples/sec: 2386.80 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-13 16:25:23,876 epoch 6 - iter 441/1476 - loss 0.03132242 - time (sec): 21.18 - samples/sec: 2410.71 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-13 16:25:30,766 epoch 6 - iter 588/1476 - loss 0.03209656 - time (sec): 28.07 - samples/sec: 2401.90 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-13 16:25:37,800 epoch 6 - iter 735/1476 - loss 0.03269220 - time (sec): 35.10 - samples/sec: 2419.37 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-13 16:25:44,929 epoch 6 - iter 882/1476 - loss 0.03367211 - time (sec): 42.23 - samples/sec: 2419.30 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-13 16:25:51,539 epoch 6 - iter 1029/1476 - loss 0.03249115 - time (sec): 48.84 - samples/sec: 2403.54 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-13 16:25:58,447 epoch 6 - iter 1176/1476 - loss 0.03140458 - time (sec): 55.75 - samples/sec: 2402.72 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-13 16:26:05,272 epoch 6 - iter 1323/1476 - loss 0.03117712 - time (sec): 62.58 - samples/sec: 2393.92 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-13 16:26:12,144 epoch 6 - iter 1470/1476 - loss 0.03087811 - time (sec): 69.45 - samples/sec: 2389.87 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-13 16:26:12,398 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 16:26:12,399 EPOCH 6 done: loss 0.0308 - lr: 0.000013 |
|
2023-10-13 16:26:23,570 DEV : loss 0.1737550050020218 - f1-score (micro avg) 0.8073 |
|
2023-10-13 16:26:23,599 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 16:26:30,817 epoch 7 - iter 147/1476 - loss 0.01587476 - time (sec): 7.22 - samples/sec: 2370.42 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-13 16:26:37,420 epoch 7 - iter 294/1476 - loss 0.01435257 - time (sec): 13.82 - samples/sec: 2325.55 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-13 16:26:44,799 epoch 7 - iter 441/1476 - loss 0.02157759 - time (sec): 21.20 - samples/sec: 2384.74 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-13 16:26:52,071 epoch 7 - iter 588/1476 - loss 0.02281126 - time (sec): 28.47 - samples/sec: 2434.79 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-13 16:26:58,793 epoch 7 - iter 735/1476 - loss 0.02402209 - time (sec): 35.19 - samples/sec: 2398.19 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-13 16:27:05,497 epoch 7 - iter 882/1476 - loss 0.02296830 - time (sec): 41.90 - samples/sec: 2381.17 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-13 16:27:12,184 epoch 7 - iter 1029/1476 - loss 0.02320940 - time (sec): 48.58 - samples/sec: 2384.78 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-13 16:27:18,947 epoch 7 - iter 1176/1476 - loss 0.02303719 - time (sec): 55.35 - samples/sec: 2376.63 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-13 16:27:25,778 epoch 7 - iter 1323/1476 - loss 0.02138011 - time (sec): 62.18 - samples/sec: 2373.80 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-13 16:27:32,996 epoch 7 - iter 1470/1476 - loss 0.02155465 - time (sec): 69.40 - samples/sec: 2390.58 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-13 16:27:33,255 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 16:27:33,255 EPOCH 7 done: loss 0.0215 - lr: 0.000010 |
|
2023-10-13 16:27:44,418 DEV : loss 0.20156921446323395 - f1-score (micro avg) 0.8156 |
|
2023-10-13 16:27:44,448 saving best model |
|
2023-10-13 16:27:45,057 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 16:27:52,066 epoch 8 - iter 147/1476 - loss 0.01727771 - time (sec): 7.00 - samples/sec: 2398.66 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-13 16:27:59,060 epoch 8 - iter 294/1476 - loss 0.01903390 - time (sec): 14.00 - samples/sec: 2412.30 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-13 16:28:06,483 epoch 8 - iter 441/1476 - loss 0.01852869 - time (sec): 21.42 - samples/sec: 2482.55 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-13 16:28:13,207 epoch 8 - iter 588/1476 - loss 0.01894146 - time (sec): 28.14 - samples/sec: 2415.93 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-13 16:28:20,113 epoch 8 - iter 735/1476 - loss 0.01775006 - time (sec): 35.05 - samples/sec: 2390.37 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-13 16:28:26,932 epoch 8 - iter 882/1476 - loss 0.01706730 - time (sec): 41.87 - samples/sec: 2369.20 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-13 16:28:33,847 epoch 8 - iter 1029/1476 - loss 0.01593317 - time (sec): 48.78 - samples/sec: 2361.06 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-13 16:28:40,797 epoch 8 - iter 1176/1476 - loss 0.01516748 - time (sec): 55.73 - samples/sec: 2338.33 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-13 16:28:47,956 epoch 8 - iter 1323/1476 - loss 0.01460520 - time (sec): 62.89 - samples/sec: 2354.33 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-13 16:28:54,942 epoch 8 - iter 1470/1476 - loss 0.01394633 - time (sec): 69.88 - samples/sec: 2372.44 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-13 16:28:55,205 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 16:28:55,205 EPOCH 8 done: loss 0.0139 - lr: 0.000007 |
|
2023-10-13 16:29:06,318 DEV : loss 0.21695148944854736 - f1-score (micro avg) 0.8318 |
|
2023-10-13 16:29:06,348 saving best model |
|
2023-10-13 16:29:06,888 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 16:29:13,839 epoch 9 - iter 147/1476 - loss 0.01149428 - time (sec): 6.95 - samples/sec: 2241.86 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-13 16:29:20,892 epoch 9 - iter 294/1476 - loss 0.01051718 - time (sec): 14.00 - samples/sec: 2354.76 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-13 16:29:27,592 epoch 9 - iter 441/1476 - loss 0.01109949 - time (sec): 20.70 - samples/sec: 2346.93 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-13 16:29:34,486 epoch 9 - iter 588/1476 - loss 0.01034791 - time (sec): 27.59 - samples/sec: 2365.06 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-13 16:29:41,777 epoch 9 - iter 735/1476 - loss 0.01038753 - time (sec): 34.88 - samples/sec: 2389.31 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-13 16:29:48,663 epoch 9 - iter 882/1476 - loss 0.00977770 - time (sec): 41.77 - samples/sec: 2369.64 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-13 16:29:55,755 epoch 9 - iter 1029/1476 - loss 0.00886349 - time (sec): 48.86 - samples/sec: 2375.51 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-13 16:30:02,562 epoch 9 - iter 1176/1476 - loss 0.00868716 - time (sec): 55.67 - samples/sec: 2364.56 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-13 16:30:09,255 epoch 9 - iter 1323/1476 - loss 0.00810351 - time (sec): 62.36 - samples/sec: 2374.52 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-13 16:30:16,370 epoch 9 - iter 1470/1476 - loss 0.01065603 - time (sec): 69.48 - samples/sec: 2383.02 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-13 16:30:16,664 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 16:30:16,664 EPOCH 9 done: loss 0.0110 - lr: 0.000003 |
|
2023-10-13 16:30:27,816 DEV : loss 0.20820745825767517 - f1-score (micro avg) 0.8377 |
|
2023-10-13 16:30:27,845 saving best model |
|
2023-10-13 16:30:28,406 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 16:30:35,677 epoch 10 - iter 147/1476 - loss 0.00895335 - time (sec): 7.27 - samples/sec: 2440.59 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-13 16:30:42,470 epoch 10 - iter 294/1476 - loss 0.00653471 - time (sec): 14.06 - samples/sec: 2395.44 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-13 16:30:49,027 epoch 10 - iter 441/1476 - loss 0.00745494 - time (sec): 20.62 - samples/sec: 2388.45 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-13 16:30:56,197 epoch 10 - iter 588/1476 - loss 0.00712878 - time (sec): 27.79 - samples/sec: 2366.71 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-13 16:31:03,271 epoch 10 - iter 735/1476 - loss 0.00682681 - time (sec): 34.86 - samples/sec: 2347.22 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-13 16:31:10,608 epoch 10 - iter 882/1476 - loss 0.00780092 - time (sec): 42.20 - samples/sec: 2386.20 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-13 16:31:17,347 epoch 10 - iter 1029/1476 - loss 0.00743818 - time (sec): 48.94 - samples/sec: 2359.12 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-13 16:31:24,541 epoch 10 - iter 1176/1476 - loss 0.00763687 - time (sec): 56.13 - samples/sec: 2360.28 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-13 16:31:31,528 epoch 10 - iter 1323/1476 - loss 0.00786299 - time (sec): 63.12 - samples/sec: 2367.54 - lr: 0.000000 - momentum: 0.000000 |
|
2023-10-13 16:31:38,440 epoch 10 - iter 1470/1476 - loss 0.00744089 - time (sec): 70.03 - samples/sec: 2368.59 - lr: 0.000000 - momentum: 0.000000 |
|
2023-10-13 16:31:38,703 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 16:31:38,703 EPOCH 10 done: loss 0.0074 - lr: 0.000000 |
|
2023-10-13 16:31:50,374 DEV : loss 0.2123088389635086 - f1-score (micro avg) 0.8335 |
|
2023-10-13 16:31:50,806 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 16:31:50,807 Loading model from best epoch ... |
|
2023-10-13 16:31:52,210 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod |
|
2023-10-13 16:31:58,089 |
|
Results: |
|
- F-score (micro) 0.7975 |
|
- F-score (macro) 0.703 |
|
- Accuracy 0.6891 |
|
|
|
By class: |
|
precision recall f1-score support |
|
|
|
loc 0.8449 0.8823 0.8632 858 |
|
pers 0.7500 0.8045 0.7763 537 |
|
org 0.5968 0.5606 0.5781 132 |
|
prod 0.6935 0.7049 0.6992 61 |
|
time 0.5556 0.6481 0.5983 54 |
|
|
|
micro avg 0.7792 0.8167 0.7975 1642 |
|
macro avg 0.6881 0.7201 0.7030 1642 |
|
weighted avg 0.7788 0.8167 0.7970 1642 |
|
|
|
2023-10-13 16:31:58,089 ---------------------------------------------------------------------------------------------------- |
|
|