hmatzner commited on
Commit
d6f9096
·
1 Parent(s): 3a3f127

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -5.54 +/- 1.98
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0425755472f4c6602427cbc14223e9ac1e66f08089575de634db70aee368c2e
3
+ size 108112
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f68048a3ca0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f68048a4840>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1678833656119836102,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAV6DbPk6PX7xJchE/V6DbPk6PX7xJchE/V6DbPk6PX7xJchE/V6DbPk6PX7xJchE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALxlaP9jRZT91Hdm/0wn0vnbXrz0QZdw/AHOKPxDYhT9NvP6+MPapP2cdyb+Os6q/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABXoNs+To9fvElyET9IoQq8xjjGuOA5T7xXoNs+To9fvElyET9IoQq8xjjGuOA5T7xXoNs+To9fvElyET9IoQq8xjjGuOA5T7xXoNs+To9fvElyET9IoQq8xjjGuOA5T7yUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.42895767 -0.01364501 0.5681501 ]\n [ 0.42895767 -0.01364501 0.5681501 ]\n [ 0.42895767 -0.01364501 0.5681501 ]\n [ 0.42895767 -0.01364501 0.5681501 ]]",
60
+ "desired_goal": "[[ 0.8519468 0.8977332 -1.6962115 ]\n [-0.47663745 0.08586018 1.7218342 ]\n [ 1.0816345 1.0456562 -0.49753037]\n [ 1.3278255 -1.5712098 -1.3336046 ]]",
61
+ "observation": "[[ 4.2895767e-01 -1.3645006e-02 5.6815010e-01 -8.4613040e-03\n -9.4519506e-05 -1.2648076e-02]\n [ 4.2895767e-01 -1.3645006e-02 5.6815010e-01 -8.4613040e-03\n -9.4519506e-05 -1.2648076e-02]\n [ 4.2895767e-01 -1.3645006e-02 5.6815010e-01 -8.4613040e-03\n -9.4519506e-05 -1.2648076e-02]\n [ 4.2895767e-01 -1.3645006e-02 5.6815010e-01 -8.4613040e-03\n -9.4519506e-05 -1.2648076e-02]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJciyPSUlnjyPQho+b3yEPeO7Bj64kH8+amSTuxPwrr0zKAw+khQdveFICb7SDxE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.08729581 0.01930482 0.15064453]\n [ 0.06469046 0.1315761 0.2495755 ]\n [-0.00449805 -0.08541884 0.1368721 ]\n [-0.0383497 -0.13406707 0.14166191]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvMlv0cmiEMCUhpRSlIwBbJRLMowBdJRHQKmH4xhUipx1fZQoaAZoCWgPQwiA8Qwa+ncSwJSGlFKUaBVLMmgWR0Cph3xc/t6YdX2UKGgGaAloD0MI0xdCzvs/GsCUhpRSlGgVSzJoFkdAqYcaHuZ1FHV9lChoBmgJaA9DCFaCxeHMTw/AlIaUUpRoFUsyaBZHQKmGvNN8E3d1fZQoaAZoCWgPQwiMFTWYhgEQwJSGlFKUaBVLMmgWR0CpiPGpVCHAdX2UKGgGaAloD0MI2SJpN/r4CcCUhpRSlGgVSzJoFkdAqYiK1b7j1nV9lChoBmgJaA9DCGpq2VpfxA3AlIaUUpRoFUsyaBZHQKmIKUJv5xl1fZQoaAZoCWgPQwizt5Tzxe4SwJSGlFKUaBVLMmgWR0Cph8wfhddFdX2UKGgGaAloD0MIz2kWaHcoFsCUhpRSlGgVSzJoFkdAqYoQUlAu7HV9lChoBmgJaA9DCN2VXTC4xhbAlIaUUpRoFUsyaBZHQKmJqbgjyFx1fZQoaAZoCWgPQwhm9Q63Q3MUwJSGlFKUaBVLMmgWR0CpiUeVLSNPdX2UKGgGaAloD0MI3bbvUX9dFcCUhpRSlGgVSzJoFkdAqYjqVfNRnHV9lChoBmgJaA9DCP2gLlIomxLAlIaUUpRoFUsyaBZHQKmLDZW7voh1fZQoaAZoCWgPQwjKUYAomFEMwJSGlFKUaBVLMmgWR0CpiqbbcoH+dX2UKGgGaAloD0MIEM08uaawEMCUhpRSlGgVSzJoFkdAqYpEwg1WKnV9lChoBmgJaA9DCEgYBiy5qh/AlIaUUpRoFUsyaBZHQKmJ54HHFP11fZQoaAZoCWgPQwjGpwAYzyANwJSGlFKUaBVLMmgWR0CpjDO01IiDdX2UKGgGaAloD0MIXvdWJCbIDMCUhpRSlGgVSzJoFkdAqYvNG3F1jnV9lChoBmgJaA9DCKLw2To4uB/AlIaUUpRoFUsyaBZHQKmLatmL9/B1fZQoaAZoCWgPQwiQLjatFKIOwJSGlFKUaBVLMmgWR0Cpiw3CTEBKdX2UKGgGaAloD0MIghspWyR9FsCUhpRSlGgVSzJoFkdAqY07ijtXxXV9lChoBmgJaA9DCAGG5c+3ZRHAlIaUUpRoFUsyaBZHQKmM1LpRoAZ1fZQoaAZoCWgPQwiUMqmhDVAZwJSGlFKUaBVLMmgWR0CpjHJ04iosdX2UKGgGaAloD0MI+tFwytwcGcCUhpRSlGgVSzJoFkdAqYwVLHuJDXV9lChoBmgJaA9DCPfkYaHWVAbAlIaUUpRoFUsyaBZHQKmOUf6oESx1fZQoaAZoCWgPQwijVwOUhsoSwJSGlFKUaBVLMmgWR0Cpjes/QjUvdX2UKGgGaAloD0MIk6gXfJrTE8CUhpRSlGgVSzJoFkdAqY2I+UyHmHV9lChoBmgJaA9DCGaGjbJ+EwrAlIaUUpRoFUsyaBZHQKmNK6y0KJF1fZQoaAZoCWgPQwjUnLzIBAwYwJSGlFKUaBVLMmgWR0Cpj1kvboKVdX2UKGgGaAloD0MI8RDGT+MOFsCUhpRSlGgVSzJoFkdAqY7ya/h2n3V9lChoBmgJaA9DCPJ6MCk+ZirAlIaUUpRoFUsyaBZHQKmOkIX0oSd1fZQoaAZoCWgPQwjpgCTs2xkUwJSGlFKUaBVLMmgWR0CpjjMpXp4bdX2UKGgGaAloD0MI2xSPi2qBEsCUhpRSlGgVSzJoFkdAqZCAsqaw2XV9lChoBmgJaA9DCA8nMJ3WTRDAlIaUUpRoFUsyaBZHQKmQGowVTJh1fZQoaAZoCWgPQwiuDoC4q1cNwJSGlFKUaBVLMmgWR0Cpj7h0IToMdX2UKGgGaAloD0MICanb2VeuEsCUhpRSlGgVSzJoFkdAqY9bQTmGNHV9lChoBmgJaA9DCHu8kA4PqSHAlIaUUpRoFUsyaBZHQKmRjHOryUd1fZQoaAZoCWgPQwgoDwu1pikQwJSGlFKUaBVLMmgWR0CpkSW5QP7OdX2UKGgGaAloD0MINnf0v1yrJMCUhpRSlGgVSzJoFkdAqZDDzK9wm3V9lChoBmgJaA9DCIcx6e+lkBLAlIaUUpRoFUsyaBZHQKmQZoEB8x91fZQoaAZoCWgPQwiJXkax3PINwJSGlFKUaBVLMmgWR0Cpko6m4y44dX2UKGgGaAloD0MIKbAApgwMFsCUhpRSlGgVSzJoFkdAqZIn6uW8iHV9lChoBmgJaA9DCI1Cklm9ow3AlIaUUpRoFUsyaBZHQKmRxZezD4x1fZQoaAZoCWgPQwhwlLw6x4ASwJSGlFKUaBVLMmgWR0CpkWiGN70GdX2UKGgGaAloD0MI+tUcIJiDF8CUhpRSlGgVSzJoFkdAqZOl3ljmS3V9lChoBmgJaA9DCFRTknU4qhDAlIaUUpRoFUsyaBZHQKmTPzqbBoF1fZQoaAZoCWgPQwjSqMDJNggowJSGlFKUaBVLMmgWR0Cpkt0Hpr1vdX2UKGgGaAloD0MIHTo978ZCCsCUhpRSlGgVSzJoFkdAqZJ/sPatcXV9lChoBmgJaA9DCOm5ha5EkBLAlIaUUpRoFUsyaBZHQKmUqc/+sHV1fZQoaAZoCWgPQwgsflNYqQAiwJSGlFKUaBVLMmgWR0CplEPNeMQ3dX2UKGgGaAloD0MI7Z3RViVxGcCUhpRSlGgVSzJoFkdAqZPjl90A93V9lChoBmgJaA9DCDJXBtUG9xvAlIaUUpRoFUsyaBZHQKmThuNxVAB1fZQoaAZoCWgPQwjQDU3Z6ccRwJSGlFKUaBVLMmgWR0CplcLrX18LdX2UKGgGaAloD0MIJICbxYu9IMCUhpRSlGgVSzJoFkdAqZVcSXdCV3V9lChoBmgJaA9DCN7IPPIHAxLAlIaUUpRoFUsyaBZHQKmU+sJY1YR1fZQoaAZoCWgPQwjjqrLvitghwJSGlFKUaBVLMmgWR0CplJ2S+xnndX2UKGgGaAloD0MI3nGKjuRSD8CUhpRSlGgVSzJoFkdAqZbINutOmHV9lChoBmgJaA9DCOEmo8owHhXAlIaUUpRoFUsyaBZHQKmWYbtqpLp1fZQoaAZoCWgPQwhqwvaTMd4RwJSGlFKUaBVLMmgWR0Cplf+5vtMPdX2UKGgGaAloD0MIizidZKt7HMCUhpRSlGgVSzJoFkdAqZWieumrKnV9lChoBmgJaA9DCPpFCfoLDRjAlIaUUpRoFUsyaBZHQKmX6Mir1dx1fZQoaAZoCWgPQwiE1y5tOCwSwJSGlFKUaBVLMmgWR0Cpl4IHkcS5dX2UKGgGaAloD0MIMA+Z8iHoE8CUhpRSlGgVSzJoFkdAqZcfyf+S83V9lChoBmgJaA9DCFVoIJbNHA/AlIaUUpRoFUsyaBZHQKmWwt4A0bd1fZQoaAZoCWgPQwgJOIQqNRsSwJSGlFKUaBVLMmgWR0CpmRk1EVnFdX2UKGgGaAloD0MI8bvplh1CDMCUhpRSlGgVSzJoFkdAqZiy8Yht+HV9lChoBmgJaA9DCE2G4/kMyBLAlIaUUpRoFUsyaBZHQKmYUKZUkv91fZQoaAZoCWgPQwhauKzCZmARwJSGlFKUaBVLMmgWR0Cpl/PXkHUudX2UKGgGaAloD0MI5iDoaFXLD8CUhpRSlGgVSzJoFkdAqZoeVE/jbXV9lChoBmgJaA9DCAOxbOaQFBLAlIaUUpRoFUsyaBZHQKmZt3L3bmF1fZQoaAZoCWgPQwg7+8qD9EQYwJSGlFKUaBVLMmgWR0CpmVU4zabndX2UKGgGaAloD0MIzO80mfG2E8CUhpRSlGgVSzJoFkdAqZj36KtPpXV9lChoBmgJaA9DCKBU+3Q8Bg/AlIaUUpRoFUsyaBZHQKmbL2A5Jbt1fZQoaAZoCWgPQwhLPnYXKDkUwJSGlFKUaBVLMmgWR0CpmsjGT9sKdX2UKGgGaAloD0MIG/UQje4AEMCUhpRSlGgVSzJoFkdAqZpmo3rD63V9lChoBmgJaA9DCNzXgXNGNAvAlIaUUpRoFUsyaBZHQKmaCVN5+ph1fZQoaAZoCWgPQwgl6C/0iBEfwJSGlFKUaBVLMmgWR0CpnIsU7CBPdX2UKGgGaAloD0MIh6bs9INaEsCUhpRSlGgVSzJoFkdAqZwls3yZr3V9lChoBmgJaA9DCD0QWaSJ5xPAlIaUUpRoFUsyaBZHQKmbxAiV0Ld1fZQoaAZoCWgPQwjedwyP/YwPwJSGlFKUaBVLMmgWR0Cpm2d1MdtEdX2UKGgGaAloD0MI0H8PXrukEsCUhpRSlGgVSzJoFkdAqZ5baufVZ3V9lChoBmgJaA9DCAUYlj/fVhXAlIaUUpRoFUsyaBZHQKmd9VCojwB1fZQoaAZoCWgPQwj2fThIiIIWwJSGlFKUaBVLMmgWR0CpnZPSMLncdX2UKGgGaAloD0MIuvlGdM/aEsCUhpRSlGgVSzJoFkdAqZ04iNbTt3V9lChoBmgJaA9DCNsX0At3nhfAlIaUUpRoFUsyaBZHQKmgBDUExIt1fZQoaAZoCWgPQwjoSgSqf1AQwJSGlFKUaBVLMmgWR0Cpn54RdyDJdX2UKGgGaAloD0MIWyiZnNrZFsCUhpRSlGgVSzJoFkdAqZ88/GEPD3V9lChoBmgJaA9DCNL+B1irFhXAlIaUUpRoFUsyaBZHQKme4MBp5/t1fZQoaAZoCWgPQwj0jH3JxjMXwJSGlFKUaBVLMmgWR0CpodzOgQHzdX2UKGgGaAloD0MIbjMV4pE4EcCUhpRSlGgVSzJoFkdAqaF24oZydXV9lChoBmgJaA9DCC49murJrBTAlIaUUpRoFUsyaBZHQKmhFmRvFWJ1fZQoaAZoCWgPQwhxIY/gRuoSwJSGlFKUaBVLMmgWR0CpoLoCU5dXdX2UKGgGaAloD0MI8DFYcao1FsCUhpRSlGgVSzJoFkdAqaO5qIrOJXV9lChoBmgJaA9DCJlGk4sxsAvAlIaUUpRoFUsyaBZHQKmjU5MDfWN1fZQoaAZoCWgPQwj+utOdJ14SwJSGlFKUaBVLMmgWR0CpovM7uDzzdX2UKGgGaAloD0MIpkboZ+oNIcCUhpRSlGgVSzJoFkdAqaKW9L6DXnV9lChoBmgJaA9DCLSvPEhPkRbAlIaUUpRoFUsyaBZHQKmlgx6fJ3h1fZQoaAZoCWgPQwiS66aU1yoUwJSGlFKUaBVLMmgWR0CppR2krPMTdX2UKGgGaAloD0MIGOsbmNyoD8CUhpRSlGgVSzJoFkdAqaS8NDtw73V9lChoBmgJaA9DCE8Cm3PwbBfAlIaUUpRoFUsyaBZHQKmkX+fh/Al1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55b09fc2c350d13bee1637d4a8a6ac446d3c396bcb236d8b2c8b8f43a3f2eaa6
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e0e3189daa91a10f34bb98d1ccc21f9031eb2ea8a493832882cda1048503363
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f68048a3ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f68048a4840>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678833656119836102, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAV6DbPk6PX7xJchE/V6DbPk6PX7xJchE/V6DbPk6PX7xJchE/V6DbPk6PX7xJchE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALxlaP9jRZT91Hdm/0wn0vnbXrz0QZdw/AHOKPxDYhT9NvP6+MPapP2cdyb+Os6q/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABXoNs+To9fvElyET9IoQq8xjjGuOA5T7xXoNs+To9fvElyET9IoQq8xjjGuOA5T7xXoNs+To9fvElyET9IoQq8xjjGuOA5T7xXoNs+To9fvElyET9IoQq8xjjGuOA5T7yUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.42895767 -0.01364501 0.5681501 ]\n [ 0.42895767 -0.01364501 0.5681501 ]\n [ 0.42895767 -0.01364501 0.5681501 ]\n [ 0.42895767 -0.01364501 0.5681501 ]]", "desired_goal": "[[ 0.8519468 0.8977332 -1.6962115 ]\n [-0.47663745 0.08586018 1.7218342 ]\n [ 1.0816345 1.0456562 -0.49753037]\n [ 1.3278255 -1.5712098 -1.3336046 ]]", "observation": "[[ 4.2895767e-01 -1.3645006e-02 5.6815010e-01 -8.4613040e-03\n -9.4519506e-05 -1.2648076e-02]\n [ 4.2895767e-01 -1.3645006e-02 5.6815010e-01 -8.4613040e-03\n -9.4519506e-05 -1.2648076e-02]\n [ 4.2895767e-01 -1.3645006e-02 5.6815010e-01 -8.4613040e-03\n -9.4519506e-05 -1.2648076e-02]\n [ 4.2895767e-01 -1.3645006e-02 5.6815010e-01 -8.4613040e-03\n -9.4519506e-05 -1.2648076e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJciyPSUlnjyPQho+b3yEPeO7Bj64kH8+amSTuxPwrr0zKAw+khQdveFICb7SDxE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.08729581 0.01930482 0.15064453]\n [ 0.06469046 0.1315761 0.2495755 ]\n [-0.00449805 -0.08541884 0.1368721 ]\n [-0.0383497 -0.13406707 0.14166191]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvMlv0cmiEMCUhpRSlIwBbJRLMowBdJRHQKmH4xhUipx1fZQoaAZoCWgPQwiA8Qwa+ncSwJSGlFKUaBVLMmgWR0Cph3xc/t6YdX2UKGgGaAloD0MI0xdCzvs/GsCUhpRSlGgVSzJoFkdAqYcaHuZ1FHV9lChoBmgJaA9DCFaCxeHMTw/AlIaUUpRoFUsyaBZHQKmGvNN8E3d1fZQoaAZoCWgPQwiMFTWYhgEQwJSGlFKUaBVLMmgWR0CpiPGpVCHAdX2UKGgGaAloD0MI2SJpN/r4CcCUhpRSlGgVSzJoFkdAqYiK1b7j1nV9lChoBmgJaA9DCGpq2VpfxA3AlIaUUpRoFUsyaBZHQKmIKUJv5xl1fZQoaAZoCWgPQwizt5Tzxe4SwJSGlFKUaBVLMmgWR0Cph8wfhddFdX2UKGgGaAloD0MIz2kWaHcoFsCUhpRSlGgVSzJoFkdAqYoQUlAu7HV9lChoBmgJaA9DCN2VXTC4xhbAlIaUUpRoFUsyaBZHQKmJqbgjyFx1fZQoaAZoCWgPQwhm9Q63Q3MUwJSGlFKUaBVLMmgWR0CpiUeVLSNPdX2UKGgGaAloD0MI3bbvUX9dFcCUhpRSlGgVSzJoFkdAqYjqVfNRnHV9lChoBmgJaA9DCP2gLlIomxLAlIaUUpRoFUsyaBZHQKmLDZW7voh1fZQoaAZoCWgPQwjKUYAomFEMwJSGlFKUaBVLMmgWR0CpiqbbcoH+dX2UKGgGaAloD0MIEM08uaawEMCUhpRSlGgVSzJoFkdAqYpEwg1WKnV9lChoBmgJaA9DCEgYBiy5qh/AlIaUUpRoFUsyaBZHQKmJ54HHFP11fZQoaAZoCWgPQwjGpwAYzyANwJSGlFKUaBVLMmgWR0CpjDO01IiDdX2UKGgGaAloD0MIXvdWJCbIDMCUhpRSlGgVSzJoFkdAqYvNG3F1jnV9lChoBmgJaA9DCKLw2To4uB/AlIaUUpRoFUsyaBZHQKmLatmL9/B1fZQoaAZoCWgPQwiQLjatFKIOwJSGlFKUaBVLMmgWR0Cpiw3CTEBKdX2UKGgGaAloD0MIghspWyR9FsCUhpRSlGgVSzJoFkdAqY07ijtXxXV9lChoBmgJaA9DCAGG5c+3ZRHAlIaUUpRoFUsyaBZHQKmM1LpRoAZ1fZQoaAZoCWgPQwiUMqmhDVAZwJSGlFKUaBVLMmgWR0CpjHJ04iosdX2UKGgGaAloD0MI+tFwytwcGcCUhpRSlGgVSzJoFkdAqYwVLHuJDXV9lChoBmgJaA9DCPfkYaHWVAbAlIaUUpRoFUsyaBZHQKmOUf6oESx1fZQoaAZoCWgPQwijVwOUhsoSwJSGlFKUaBVLMmgWR0Cpjes/QjUvdX2UKGgGaAloD0MIk6gXfJrTE8CUhpRSlGgVSzJoFkdAqY2I+UyHmHV9lChoBmgJaA9DCGaGjbJ+EwrAlIaUUpRoFUsyaBZHQKmNK6y0KJF1fZQoaAZoCWgPQwjUnLzIBAwYwJSGlFKUaBVLMmgWR0Cpj1kvboKVdX2UKGgGaAloD0MI8RDGT+MOFsCUhpRSlGgVSzJoFkdAqY7ya/h2n3V9lChoBmgJaA9DCPJ6MCk+ZirAlIaUUpRoFUsyaBZHQKmOkIX0oSd1fZQoaAZoCWgPQwjpgCTs2xkUwJSGlFKUaBVLMmgWR0CpjjMpXp4bdX2UKGgGaAloD0MI2xSPi2qBEsCUhpRSlGgVSzJoFkdAqZCAsqaw2XV9lChoBmgJaA9DCA8nMJ3WTRDAlIaUUpRoFUsyaBZHQKmQGowVTJh1fZQoaAZoCWgPQwiuDoC4q1cNwJSGlFKUaBVLMmgWR0Cpj7h0IToMdX2UKGgGaAloD0MICanb2VeuEsCUhpRSlGgVSzJoFkdAqY9bQTmGNHV9lChoBmgJaA9DCHu8kA4PqSHAlIaUUpRoFUsyaBZHQKmRjHOryUd1fZQoaAZoCWgPQwgoDwu1pikQwJSGlFKUaBVLMmgWR0CpkSW5QP7OdX2UKGgGaAloD0MINnf0v1yrJMCUhpRSlGgVSzJoFkdAqZDDzK9wm3V9lChoBmgJaA9DCIcx6e+lkBLAlIaUUpRoFUsyaBZHQKmQZoEB8x91fZQoaAZoCWgPQwiJXkax3PINwJSGlFKUaBVLMmgWR0Cpko6m4y44dX2UKGgGaAloD0MIKbAApgwMFsCUhpRSlGgVSzJoFkdAqZIn6uW8iHV9lChoBmgJaA9DCI1Cklm9ow3AlIaUUpRoFUsyaBZHQKmRxZezD4x1fZQoaAZoCWgPQwhwlLw6x4ASwJSGlFKUaBVLMmgWR0CpkWiGN70GdX2UKGgGaAloD0MI+tUcIJiDF8CUhpRSlGgVSzJoFkdAqZOl3ljmS3V9lChoBmgJaA9DCFRTknU4qhDAlIaUUpRoFUsyaBZHQKmTPzqbBoF1fZQoaAZoCWgPQwjSqMDJNggowJSGlFKUaBVLMmgWR0Cpkt0Hpr1vdX2UKGgGaAloD0MIHTo978ZCCsCUhpRSlGgVSzJoFkdAqZJ/sPatcXV9lChoBmgJaA9DCOm5ha5EkBLAlIaUUpRoFUsyaBZHQKmUqc/+sHV1fZQoaAZoCWgPQwgsflNYqQAiwJSGlFKUaBVLMmgWR0CplEPNeMQ3dX2UKGgGaAloD0MI7Z3RViVxGcCUhpRSlGgVSzJoFkdAqZPjl90A93V9lChoBmgJaA9DCDJXBtUG9xvAlIaUUpRoFUsyaBZHQKmThuNxVAB1fZQoaAZoCWgPQwjQDU3Z6ccRwJSGlFKUaBVLMmgWR0CplcLrX18LdX2UKGgGaAloD0MIJICbxYu9IMCUhpRSlGgVSzJoFkdAqZVcSXdCV3V9lChoBmgJaA9DCN7IPPIHAxLAlIaUUpRoFUsyaBZHQKmU+sJY1YR1fZQoaAZoCWgPQwjjqrLvitghwJSGlFKUaBVLMmgWR0CplJ2S+xnndX2UKGgGaAloD0MI3nGKjuRSD8CUhpRSlGgVSzJoFkdAqZbINutOmHV9lChoBmgJaA9DCOEmo8owHhXAlIaUUpRoFUsyaBZHQKmWYbtqpLp1fZQoaAZoCWgPQwhqwvaTMd4RwJSGlFKUaBVLMmgWR0Cplf+5vtMPdX2UKGgGaAloD0MIizidZKt7HMCUhpRSlGgVSzJoFkdAqZWieumrKnV9lChoBmgJaA9DCPpFCfoLDRjAlIaUUpRoFUsyaBZHQKmX6Mir1dx1fZQoaAZoCWgPQwiE1y5tOCwSwJSGlFKUaBVLMmgWR0Cpl4IHkcS5dX2UKGgGaAloD0MIMA+Z8iHoE8CUhpRSlGgVSzJoFkdAqZcfyf+S83V9lChoBmgJaA9DCFVoIJbNHA/AlIaUUpRoFUsyaBZHQKmWwt4A0bd1fZQoaAZoCWgPQwgJOIQqNRsSwJSGlFKUaBVLMmgWR0CpmRk1EVnFdX2UKGgGaAloD0MI8bvplh1CDMCUhpRSlGgVSzJoFkdAqZiy8Yht+HV9lChoBmgJaA9DCE2G4/kMyBLAlIaUUpRoFUsyaBZHQKmYUKZUkv91fZQoaAZoCWgPQwhauKzCZmARwJSGlFKUaBVLMmgWR0Cpl/PXkHUudX2UKGgGaAloD0MI5iDoaFXLD8CUhpRSlGgVSzJoFkdAqZoeVE/jbXV9lChoBmgJaA9DCAOxbOaQFBLAlIaUUpRoFUsyaBZHQKmZt3L3bmF1fZQoaAZoCWgPQwg7+8qD9EQYwJSGlFKUaBVLMmgWR0CpmVU4zabndX2UKGgGaAloD0MIzO80mfG2E8CUhpRSlGgVSzJoFkdAqZj36KtPpXV9lChoBmgJaA9DCKBU+3Q8Bg/AlIaUUpRoFUsyaBZHQKmbL2A5Jbt1fZQoaAZoCWgPQwhLPnYXKDkUwJSGlFKUaBVLMmgWR0CpmsjGT9sKdX2UKGgGaAloD0MIG/UQje4AEMCUhpRSlGgVSzJoFkdAqZpmo3rD63V9lChoBmgJaA9DCNzXgXNGNAvAlIaUUpRoFUsyaBZHQKmaCVN5+ph1fZQoaAZoCWgPQwgl6C/0iBEfwJSGlFKUaBVLMmgWR0CpnIsU7CBPdX2UKGgGaAloD0MIh6bs9INaEsCUhpRSlGgVSzJoFkdAqZwls3yZr3V9lChoBmgJaA9DCD0QWaSJ5xPAlIaUUpRoFUsyaBZHQKmbxAiV0Ld1fZQoaAZoCWgPQwjedwyP/YwPwJSGlFKUaBVLMmgWR0Cpm2d1MdtEdX2UKGgGaAloD0MI0H8PXrukEsCUhpRSlGgVSzJoFkdAqZ5baufVZ3V9lChoBmgJaA9DCAUYlj/fVhXAlIaUUpRoFUsyaBZHQKmd9VCojwB1fZQoaAZoCWgPQwj2fThIiIIWwJSGlFKUaBVLMmgWR0CpnZPSMLncdX2UKGgGaAloD0MIuvlGdM/aEsCUhpRSlGgVSzJoFkdAqZ04iNbTt3V9lChoBmgJaA9DCNsX0At3nhfAlIaUUpRoFUsyaBZHQKmgBDUExIt1fZQoaAZoCWgPQwjoSgSqf1AQwJSGlFKUaBVLMmgWR0Cpn54RdyDJdX2UKGgGaAloD0MIWyiZnNrZFsCUhpRSlGgVSzJoFkdAqZ88/GEPD3V9lChoBmgJaA9DCNL+B1irFhXAlIaUUpRoFUsyaBZHQKme4MBp5/t1fZQoaAZoCWgPQwj0jH3JxjMXwJSGlFKUaBVLMmgWR0CpodzOgQHzdX2UKGgGaAloD0MIbjMV4pE4EcCUhpRSlGgVSzJoFkdAqaF24oZydXV9lChoBmgJaA9DCC49murJrBTAlIaUUpRoFUsyaBZHQKmhFmRvFWJ1fZQoaAZoCWgPQwhxIY/gRuoSwJSGlFKUaBVLMmgWR0CpoLoCU5dXdX2UKGgGaAloD0MI8DFYcao1FsCUhpRSlGgVSzJoFkdAqaO5qIrOJXV9lChoBmgJaA9DCJlGk4sxsAvAlIaUUpRoFUsyaBZHQKmjU5MDfWN1fZQoaAZoCWgPQwj+utOdJ14SwJSGlFKUaBVLMmgWR0CpovM7uDzzdX2UKGgGaAloD0MIpkboZ+oNIcCUhpRSlGgVSzJoFkdAqaKW9L6DXnV9lChoBmgJaA9DCLSvPEhPkRbAlIaUUpRoFUsyaBZHQKmlgx6fJ3h1fZQoaAZoCWgPQwiS66aU1yoUwJSGlFKUaBVLMmgWR0CppR2krPMTdX2UKGgGaAloD0MIGOsbmNyoD8CUhpRSlGgVSzJoFkdAqaS8NDtw73V9lChoBmgJaA9DCE8Cm3PwbBfAlIaUUpRoFUsyaBZHQKmkX+fh/Al1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (839 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -5.540831868909299, "std_reward": 1.982845244466299, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-14T23:35:42.878685"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8fa0eac54f98e36cc1ae86011c21ad2d20c44d7a26a968e99de7bbdde8e3840
3
+ size 3056