Add new SentenceTransformer model.
Browse files- .gitattributes +2 -0
- 0_WordEmbeddings/pytorch_model.bin +3 -0
- 0_WordEmbeddings/whitespacetokenizer_config.json +0 -0
- 0_WordEmbeddings/wordembedding_config.json +5 -0
- 1_LSTM/lstm_config.json +7 -0
- 1_LSTM/pytorch_model.bin +3 -0
- 2_Pooling/config.json +9 -0
- README.md +95 -0
- config_sentence_transformers.json +7 -0
- modules.json +20 -0
.gitattributes
CHANGED
|
@@ -32,3 +32,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
1_LSTM/pytorch_model.bin filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
0_WordEmbeddings/pytorch_model.bin filter=lfs diff=lfs merge=lfs -text
|
0_WordEmbeddings/pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7998e908ee896b834bb9a5cf5b69e39c75804fd7447ceb6b6cd2b12d3f982f96
|
| 3 |
+
size 480002045
|
0_WordEmbeddings/whitespacetokenizer_config.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
0_WordEmbeddings/wordembedding_config.json
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"tokenizer_class": "sentence_transformers.models.tokenizer.WhitespaceTokenizer.WhitespaceTokenizer",
|
| 3 |
+
"update_embeddings": false,
|
| 4 |
+
"max_seq_length": 1000000
|
| 5 |
+
}
|
1_LSTM/lstm_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 300,
|
| 3 |
+
"hidden_dim": 1024,
|
| 4 |
+
"num_layers": 1,
|
| 5 |
+
"dropout": 0,
|
| 6 |
+
"bidirectional": true
|
| 7 |
+
}
|
1_LSTM/pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7f00589cecf3dd9571765de1745904da448a19e96b8d82daeb27a9c2940f6f55
|
| 3 |
+
size 43451901
|
2_Pooling/config.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 2048,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": false,
|
| 5 |
+
"pooling_mode_max_tokens": true,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false
|
| 9 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
pipeline_tag: sentence-similarity
|
| 3 |
+
tags:
|
| 4 |
+
- sentence-transformers
|
| 5 |
+
- feature-extraction
|
| 6 |
+
- sentence-similarity
|
| 7 |
+
|
| 8 |
+
---
|
| 9 |
+
|
| 10 |
+
# hli/lstm-qqp-sentence-transformer
|
| 11 |
+
|
| 12 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 2048 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
| 13 |
+
|
| 14 |
+
<!--- Describe your model here -->
|
| 15 |
+
|
| 16 |
+
## Usage (Sentence-Transformers)
|
| 17 |
+
|
| 18 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
| 19 |
+
|
| 20 |
+
```
|
| 21 |
+
pip install -U sentence-transformers
|
| 22 |
+
```
|
| 23 |
+
|
| 24 |
+
Then you can use the model like this:
|
| 25 |
+
|
| 26 |
+
```python
|
| 27 |
+
from sentence_transformers import SentenceTransformer
|
| 28 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
| 29 |
+
|
| 30 |
+
model = SentenceTransformer('hli/lstm-qqp-sentence-transformer')
|
| 31 |
+
embeddings = model.encode(sentences)
|
| 32 |
+
print(embeddings)
|
| 33 |
+
```
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
## Evaluation Results
|
| 38 |
+
|
| 39 |
+
<!--- Describe how your model was evaluated -->
|
| 40 |
+
|
| 41 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=hli/lstm-qqp-sentence-transformer)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
## Training
|
| 45 |
+
The model was trained with the parameters:
|
| 46 |
+
|
| 47 |
+
**DataLoader**:
|
| 48 |
+
|
| 49 |
+
`torch.utils.data.dataloader.DataLoader` of length 3181 with parameters:
|
| 50 |
+
```
|
| 51 |
+
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
| 52 |
+
```
|
| 53 |
+
|
| 54 |
+
**Loss**:
|
| 55 |
+
|
| 56 |
+
`sentence_transformers.losses.TripletLoss.TripletLoss` with parameters:
|
| 57 |
+
```
|
| 58 |
+
{'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 5}
|
| 59 |
+
```
|
| 60 |
+
|
| 61 |
+
Parameters of the fit()-Method:
|
| 62 |
+
```
|
| 63 |
+
{
|
| 64 |
+
"epochs": 10,
|
| 65 |
+
"evaluation_steps": 0,
|
| 66 |
+
"evaluator": "NoneType",
|
| 67 |
+
"max_grad_norm": 1,
|
| 68 |
+
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
| 69 |
+
"optimizer_params": {
|
| 70 |
+
"lr": 2e-05
|
| 71 |
+
},
|
| 72 |
+
"scheduler": "WarmupLinear",
|
| 73 |
+
"steps_per_epoch": null,
|
| 74 |
+
"warmup_steps": 3181,
|
| 75 |
+
"weight_decay": 0.01
|
| 76 |
+
}
|
| 77 |
+
```
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
## Full Model Architecture
|
| 81 |
+
```
|
| 82 |
+
SentenceTransformer(
|
| 83 |
+
(0): WordEmbeddings(
|
| 84 |
+
(emb_layer): Embedding(400001, 300)
|
| 85 |
+
)
|
| 86 |
+
(1): LSTM(
|
| 87 |
+
(encoder): LSTM(300, 1024, batch_first=True, bidirectional=True)
|
| 88 |
+
)
|
| 89 |
+
(2): Pooling({'word_embedding_dimension': 2048, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': True, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
|
| 90 |
+
)
|
| 91 |
+
```
|
| 92 |
+
|
| 93 |
+
## Citing & Authors
|
| 94 |
+
|
| 95 |
+
<!--- Describe where people can find more information -->
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "2.2.2",
|
| 4 |
+
"transformers": "4.28.1",
|
| 5 |
+
"pytorch": "2.0.0+cu118"
|
| 6 |
+
}
|
| 7 |
+
}
|
modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "0_WordEmbeddings",
|
| 6 |
+
"type": "sentence_transformers.models.WordEmbeddings"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_LSTM",
|
| 12 |
+
"type": "sentence_transformers.models.LSTM"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Pooling",
|
| 18 |
+
"type": "sentence_transformers.models.Pooling"
|
| 19 |
+
}
|
| 20 |
+
]
|