File size: 4,814 Bytes
aa5bd7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
---
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_5x_beit_base_sgd_001_fold3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.5813953488372093
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_5x_beit_base_sgd_001_fold3
This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0930
- Accuracy: 0.5814
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.5405 | 1.0 | 28 | 1.5276 | 0.2791 |
| 1.4164 | 2.0 | 56 | 1.4818 | 0.2558 |
| 1.3492 | 3.0 | 84 | 1.4545 | 0.3023 |
| 1.3001 | 4.0 | 112 | 1.4313 | 0.3256 |
| 1.2739 | 5.0 | 140 | 1.4088 | 0.3256 |
| 1.2528 | 6.0 | 168 | 1.3949 | 0.3488 |
| 1.2748 | 7.0 | 196 | 1.3862 | 0.3953 |
| 1.2477 | 8.0 | 224 | 1.3731 | 0.3953 |
| 1.1334 | 9.0 | 252 | 1.3517 | 0.4419 |
| 1.2313 | 10.0 | 280 | 1.3394 | 0.4419 |
| 1.1559 | 11.0 | 308 | 1.3288 | 0.4651 |
| 1.1429 | 12.0 | 336 | 1.3194 | 0.4884 |
| 1.1222 | 13.0 | 364 | 1.3129 | 0.4884 |
| 1.1193 | 14.0 | 392 | 1.3031 | 0.4884 |
| 1.1208 | 15.0 | 420 | 1.2891 | 0.4884 |
| 1.0856 | 16.0 | 448 | 1.2837 | 0.5116 |
| 1.0813 | 17.0 | 476 | 1.2664 | 0.4884 |
| 1.0315 | 18.0 | 504 | 1.2593 | 0.5116 |
| 1.0461 | 19.0 | 532 | 1.2499 | 0.5349 |
| 1.0 | 20.0 | 560 | 1.2343 | 0.5349 |
| 1.0154 | 21.0 | 588 | 1.2288 | 0.5581 |
| 1.0308 | 22.0 | 616 | 1.2111 | 0.5116 |
| 0.9899 | 23.0 | 644 | 1.2091 | 0.5349 |
| 0.9581 | 24.0 | 672 | 1.2017 | 0.4651 |
| 0.9805 | 25.0 | 700 | 1.1984 | 0.5116 |
| 0.9484 | 26.0 | 728 | 1.1851 | 0.5116 |
| 0.9269 | 27.0 | 756 | 1.1745 | 0.5116 |
| 0.9482 | 28.0 | 784 | 1.1663 | 0.5581 |
| 0.9417 | 29.0 | 812 | 1.1640 | 0.5116 |
| 0.8927 | 30.0 | 840 | 1.1540 | 0.5349 |
| 0.9018 | 31.0 | 868 | 1.1499 | 0.5349 |
| 0.9337 | 32.0 | 896 | 1.1514 | 0.5116 |
| 0.8897 | 33.0 | 924 | 1.1407 | 0.5349 |
| 0.9018 | 34.0 | 952 | 1.1332 | 0.5349 |
| 0.9545 | 35.0 | 980 | 1.1289 | 0.5581 |
| 0.8798 | 36.0 | 1008 | 1.1231 | 0.5581 |
| 0.8701 | 37.0 | 1036 | 1.1207 | 0.5349 |
| 0.8661 | 38.0 | 1064 | 1.1127 | 0.5581 |
| 0.8977 | 39.0 | 1092 | 1.1103 | 0.5349 |
| 0.9369 | 40.0 | 1120 | 1.1062 | 0.5814 |
| 0.8919 | 41.0 | 1148 | 1.1024 | 0.5814 |
| 0.8962 | 42.0 | 1176 | 1.0983 | 0.5814 |
| 0.8751 | 43.0 | 1204 | 1.0966 | 0.5814 |
| 0.895 | 44.0 | 1232 | 1.0957 | 0.5814 |
| 0.863 | 45.0 | 1260 | 1.0942 | 0.5814 |
| 0.8655 | 46.0 | 1288 | 1.0940 | 0.5814 |
| 0.8681 | 47.0 | 1316 | 1.0932 | 0.5814 |
| 0.8242 | 48.0 | 1344 | 1.0930 | 0.5814 |
| 0.8859 | 49.0 | 1372 | 1.0930 | 0.5814 |
| 0.8974 | 50.0 | 1400 | 1.0930 | 0.5814 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
|