File size: 5,115 Bytes
59ef039 064c439 fa1eb1a 064c439 fa1eb1a 59ef039 064c439 d7c71db 064c439 c570a32 064c439 11fa3e4 064c439 91b9dbf 064c439 fa1eb1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
---
language:
- en
- zh
license: other
library_name: transformers
tags:
- llama
- qwen
license_name: qwen
license_link: https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT
pipeline_tag: text-generation
inference: false
model-index:
- name: Qwen-14B-Chat-LLaMAfied
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 57.51
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=hiyouga/Qwen-14B-Chat-LLaMAfied
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 82.11
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=hiyouga/Qwen-14B-Chat-LLaMAfied
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.57
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=hiyouga/Qwen-14B-Chat-LLaMAfied
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 51.99
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=hiyouga/Qwen-14B-Chat-LLaMAfied
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 72.93
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=hiyouga/Qwen-14B-Chat-LLaMAfied
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 39.5
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=hiyouga/Qwen-14B-Chat-LLaMAfied
name: Open LLM Leaderboard
---
This is the LLaMAfied version of [Qwen-14B-Chat](https://huggingface.co/Qwen/Qwen-14B-Chat) model by Alibaba Cloud.
This model is converted with https://github.com/hiyouga/LLaMA-Factory/blob/main/tests/llamafy_qwen.py
The tokenizer is borrowed from https://huggingface.co/CausalLM/72B-preview-llamafied-qwen-llamafy
You may use this model for fine-tuning in downstream tasks, we recommend using our efficient fine-tuning toolkit. https://github.com/hiyouga/LLaMA-Factory
- **Developed by:** Alibaba Cloud.
- **Language(s) (NLP):** Chinese/English
- **License:** [Tongyi Qianwen License](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT)
Usage:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
tokenizer = AutoTokenizer.from_pretrained("hiyouga/Qwen-14B-Chat-LLaMAfied")
model = AutoModelForCausalLM.from_pretrained("hiyouga/Qwen-14B-Chat-LLaMAfied", torch_dtype="auto", device_map="auto")
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
messages = [
{"role": "user", "content": "Who are you?"}
]
inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
inputs = inputs.to("cuda")
generate_ids = model.generate(inputs, streamer=streamer)
```
You could also alternatively launch a CLI demo by using the script in [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory)
```bash
python src/cli_demo.py --template qwen --model_name_or_path hiyouga/Qwen-14B-Chat-LLaMAfied
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_hiyouga__Qwen-14B-Chat-LLaMAfied)
| Metric |Value|
|---------------------------------|----:|
|Avg. |61.60|
|AI2 Reasoning Challenge (25-Shot)|57.51|
|HellaSwag (10-Shot) |82.11|
|MMLU (5-Shot) |65.57|
|TruthfulQA (0-shot) |51.99|
|Winogrande (5-shot) |72.93|
|GSM8k (5-shot) |39.50|
|