hiyouga commited on
Commit
38283a6
·
1 Parent(s): da5a579

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -6
README.md CHANGED
@@ -19,7 +19,7 @@ inference: false
19
  A bilingual instruction-tuned LoRA model of https://huggingface.co/baichuan-inc/Baichuan-13B-Base
20
 
21
  - Instruction-following datasets used: alpaca-en, alpaca-zh, sharegpt, open assistant, lima, refgpt
22
- - Training framework: https://github.com/hiyouga/LLaMA-Efficient-Tuning
23
 
24
  Usage:
25
 
@@ -42,7 +42,7 @@ inputs = inputs.to("cuda")
42
  generate_ids = model.generate(**inputs, max_new_tokens=256, streamer=streamer)
43
  ```
44
 
45
- You could also alternatively launch a CLI demo by using the script in https://github.com/hiyouga/LLaMA-Efficient-Tuning
46
 
47
  ```bash
48
  python src/cli_demo.py --template default --model_name_or_path hiyouga/baichuan-13b-sft
@@ -54,7 +54,7 @@ You can reproduce our results by visiting the following step-by-step (Chinese) g
54
 
55
  https://zhuanlan.zhihu.com/p/645010851
56
 
57
- or using the following scripts in [LLaMA-Efficient-Tuning](https://github.com/hiyouga/LLaMA-Efficient-Tuning):
58
 
59
  ```bash
60
  CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
@@ -65,13 +65,12 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
65
  --template default \
66
  --finetuning_type lora \
67
  --lora_rank 32 \
68
- --lora_target W_pack,o_proj,down_proj,up_proj,gate_proj \
69
  --output_dir baichuan_13b_lora \
70
  --per_device_train_batch_size 4 \
71
  --gradient_accumulation_steps 8 \
72
  --preprocessing_num_workers 16 \
73
- --max_source_length 1024 \
74
- --max_target_length 512 \
75
  --optim paged_adamw_32bit \
76
  --lr_scheduler_type cosine \
77
  --logging_steps 10 \
 
19
  A bilingual instruction-tuned LoRA model of https://huggingface.co/baichuan-inc/Baichuan-13B-Base
20
 
21
  - Instruction-following datasets used: alpaca-en, alpaca-zh, sharegpt, open assistant, lima, refgpt
22
+ - Training framework: https://github.com/hiyouga/LLaMA-Factory
23
 
24
  Usage:
25
 
 
42
  generate_ids = model.generate(**inputs, max_new_tokens=256, streamer=streamer)
43
  ```
44
 
45
+ You could also alternatively launch a CLI demo by using the script in https://github.com/hiyouga/LLaMA-Factory
46
 
47
  ```bash
48
  python src/cli_demo.py --template default --model_name_or_path hiyouga/baichuan-13b-sft
 
54
 
55
  https://zhuanlan.zhihu.com/p/645010851
56
 
57
+ or using the following scripts in [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory):
58
 
59
  ```bash
60
  CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
 
65
  --template default \
66
  --finetuning_type lora \
67
  --lora_rank 32 \
68
+ --lora_target all \
69
  --output_dir baichuan_13b_lora \
70
  --per_device_train_batch_size 4 \
71
  --gradient_accumulation_steps 8 \
72
  --preprocessing_num_workers 16 \
73
+ --cutoff_len 1024 \
 
74
  --optim paged_adamw_32bit \
75
  --lr_scheduler_type cosine \
76
  --logging_steps 10 \