hipnologo commited on
Commit
27375e8
·
1 Parent(s): 82e56a5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +71 -13
README.md CHANGED
@@ -1,23 +1,23 @@
1
  ---
2
  library_name: peft
 
 
 
 
 
 
 
 
3
  ---
4
- ## Training procedure
5
 
 
6
 
7
- The following `bitsandbytes` quantization config was used during training:
8
- - load_in_8bit: False
9
- - load_in_4bit: True
10
- - llm_int8_threshold: 6.0
11
- - llm_int8_skip_modules: None
12
- - llm_int8_enable_fp32_cpu_offload: False
13
- - llm_int8_has_fp16_weight: False
14
- - bnb_4bit_quant_type: nf4
15
- - bnb_4bit_use_double_quant: True
16
- - bnb_4bit_compute_dtype: bfloat16
17
 
18
  The following `bitsandbytes` quantization config was used during training:
 
19
  - load_in_8bit: False
20
- - load_in_4bit: True
21
  - llm_int8_threshold: 6.0
22
  - llm_int8_skip_modules: None
23
  - llm_int8_enable_fp32_cpu_offload: False
@@ -25,8 +25,66 @@ The following `bitsandbytes` quantization config was used during training:
25
  - bnb_4bit_quant_type: nf4
26
  - bnb_4bit_use_double_quant: True
27
  - bnb_4bit_compute_dtype: bfloat16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  ### Framework versions
29
 
30
  - PEFT 0.4.0.dev0
31
 
32
- - PEFT 0.4.0.dev0
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: peft
3
+ license: apache-2.0
4
+ datasets:
5
+ - Abirate/english_quotes
6
+ language:
7
+ - en
8
+ pipeline_tag: text-generation
9
+ tags:
10
+ - text-generation-inference
11
  ---
 
12
 
13
+ # hipnologo/GPT-Neox-20b-QLoRA-FineTune-english_quotes_dataset
14
 
15
+ ## Training procedure
 
 
 
 
 
 
 
 
 
16
 
17
  The following `bitsandbytes` quantization config was used during training:
18
+
19
  - load_in_8bit: False
20
+ - load_in-4bit: True
21
  - llm_int8_threshold: 6.0
22
  - llm_int8_skip_modules: None
23
  - llm_int8_enable_fp32_cpu_offload: False
 
25
  - bnb_4bit_quant_type: nf4
26
  - bnb_4bit_use_double_quant: True
27
  - bnb_4bit_compute_dtype: bfloat16
28
+
29
+ ## Model description
30
+
31
+ This model is a fine-tuned version of the `EleutherAI/gpt-neox-20b` model using the QLoRa library and the PEFT library.
32
+
33
+ #### How to use
34
+
35
+ The code below performs the following steps:
36
+
37
+ 1. Imports the necessary libraries: `torch` and classes from the `transformers` library.
38
+ 2. Specifies the `model_id` as "hipnologo/GPT-Neox-20b-QLoRA-FineTune-english_quotes_dataset".
39
+ 3. Defines a `BitsAndBytesConfig` object named `bnb_config` with the following configuration:
40
+ - `load_in_4bit` set to `True`
41
+ - `bnb_4bit_use_double_quant` set to `True`
42
+ - `bnb_4bit_quant_type` set to "nf4"
43
+ - `bnb_4bit_compute_dtype` set to `torch.bfloat16`
44
+ 4. Initializes an `AutoTokenizer` object named `tokenizer` by loading the tokenizer for the specified `model_id`.
45
+ 5. Initializes an `AutoModelForCausalLM` object named `model` by loading the pre-trained model for the specified `model_id` and providing the `quantization_config` as `bnb_config`. The model is loaded on device `cuda:0`.
46
+ 6. Defines a variable `text` with the value "Twenty years from now".
47
+ 7. Defines a variable `device` with the value "cuda:0", representing the device on which the model will be executed.
48
+ 8. Encodes the `text` using the `tokenizer` and converts it to a PyTorch tensor, assigning it to the `inputs` variable. The tensor is moved to the specified `device`.
49
+ 9. Generates text using the `model.generate` method by passing the `inputs` tensor and setting the `max_new_tokens` parameter to 20. The generated output is assigned to the `outputs` variable.
50
+ 10. Decodes the `outputs` tensor using the `tokenizer` to obtain the generated text without special tokens, and assigns it to the `generated_text` variable.
51
+ 11. Prints the `generated_text`.
52
+
53
+ ```python
54
+ import torch
55
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
56
+
57
+ model_id = "hipnologo/GPT-Neox-20b-QLoRA-FineTune-english_quotes_dataset"
58
+ bnb_config = BitsAndBytesConfig(
59
+ load_in_4bit=True,
60
+ bnb_4bit_use_double_quant=True,
61
+ bnb_4bit_quant_type="nf4",
62
+ bnb_4bit_compute_dtype=torch.bfloat16
63
+ )
64
+
65
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
66
+ model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config, device_map={"":0})
67
+
68
+ text = "Twenty years from now"
69
+ device = "cuda:0"
70
+ inputs = tokenizer(text, return_tensors="pt").to(device)
71
+
72
+ outputs = model.generate(**inputs, max_new_tokens=20)
73
+ generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
74
+ print(generated_text)
75
+ ```
76
+
77
  ### Framework versions
78
 
79
  - PEFT 0.4.0.dev0
80
 
81
+ ## Training procedure
82
+
83
+ - Trainable params: 8650752
84
+ - all params: 10597552128
85
+ - trainable%: 0.08162971878329976
86
+
87
+
88
+ ## License
89
+
90
+ This model is licensed under Apache 2.0. Please see the [LICENSE](https://www.apache.org/licenses/LICENSE-2.0) for more information.