ppo-LunarLander-v2 / config.json
hhubert's picture
Upload PPO LunarLander-v2 trained agent
205962a verified
raw
history blame
13.8 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bac5c684310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bac5c6843a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bac5c684430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bac5c6844c0>", "_build": "<function ActorCriticPolicy._build at 0x7bac5c684550>", "forward": "<function ActorCriticPolicy.forward at 0x7bac5c6845e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bac5c684670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bac5c684700>", "_predict": "<function ActorCriticPolicy._predict at 0x7bac5c684790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bac5c684820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bac5c6848b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bac5c684940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bac5c81d780>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1718729862481857990, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOYw672uX4q6HkWGOrlTWr5GT/C8CZ8FvAAAgD8AAAAAZicBPbgKmT40Hqe7YV8uvgizMbytOG69AAAAAAAAAABjN1q+0t9qP13gzr3fiYm+ft8avsqSlj0AAAAAAAAAANY6gj5ISNs+crHhvWLJjr5FN8U92s6SvAAAAAAAAAAAmraUvPacb7qFn/m2/BHZscddhLpltxE2AACAPwAAgD/N+zm9BoKxP+KIqb7bCTu+ZuA5vbLsK74AAAAAAAAAAJoNOLx7jva61mVKPCqmizwLYrU7iD1yvQAAgD8AAIA/jTGRvdw6Cz0Khv09NMJYvuW6Vz2Uasw7AAAAAAAAAACTcDI+CguuPx73oj7ErcO+SvhHPm0Z7D0AAAAAAAAAAIC3qL3DjVy6k4bbuusfE7aFCig77fEAOgAAAAAAAIA/zdOgPFmxtD8q2fc+oxgBvYkTi7ydWCS9AAAAAAAAAACzeNS9W8dFP+h0zz3LS5m+Jo+WvOZVmr0AAAAAAAAAAP3nVL7/OH4/K6PUPIUVpb6OH7S9G7vXugAAAAAAAAAAmu1SvUEg3j0KyWs9cApavkaP3jxSvM+8AAAAAAAAAACaNo+8LaexP95Y+b0Q5XO+4je+vCJKor0AAAAAAAAAADNu5TzDuRu6/kOLudHG9LTrzgc6dlmjOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEd+LCN0eU+MAWyUS+GMAXSUR0Can6UL2HtXdX2UKGgGR0BxJyzkZJkHaAdNpAFoCEdAmp/C9AX2unV9lChoBkdAcqJvTgEU02gHTTYBaAhHQJq4SBRQ7911fZQoaAZHQHJJreMyaeBoB01XAWgIR0CauJGPPszEdX2UKGgGR0Bxnm3nZCfIaAdNNQFoCEdAmriqGlANX3V9lChoBkdAblnvitJWemgHTTABaAhHQJq41B1LamJ1fZQoaAZHQEaThzeXRgJoB0vtaAhHQJq5JRiw0O51fZQoaAZHQGyQBL5AQg9oB00SAWgIR0CaukxDLKV6dX2UKGgGR0Bwmw6HTI/8aAdNsgFoCEdAmrrBs/IKdHV9lChoBkdAcNjaoddVvWgHTRkBaAhHQJq7A4ACGN91fZQoaAZHQHAf3Lq2SdRoB00vAWgIR0Cau01bqyGBdX2UKGgGR0Bv7LeZXuE3aAdNRAFoCEdAmrvn4Kx9onV9lChoBkdAcaj/rSmZVmgHTT4BaAhHQJq78OCoS+R1fZQoaAZHQG4ZEzGgi/xoB01HAWgIR0CavJKqn3tbdX2UKGgGR0Bw/+7aqS5iaAdNTgFoCEdAmryRZdOZcHV9lChoBkdAcS7RjjJdSmgHTSkBaAhHQJq9pKYiPhh1fZQoaAZHQHFDlMuez2RoB00/AWgIR0CaveHXEqDsdX2UKGgGR0BuuuFnIyTIaAdNTQFoCEdAmr6txyXD33V9lChoBkdATq7oGIKtxWgHS+RoCEdAmsHVgpjMFHV9lChoBkdAb4UkmhM8HWgHTTIBaAhHQJrB/7xd6cB1fZQoaAZHQHI0SOzY289oB00hAWgIR0CawgDmr8zidX2UKGgGR0BvvJwEQoTgaAdNRAFoCEdAmsJkJOWSlnV9lChoBkdAb578stkFwGgHTT0BaAhHQJrCdvFWGRF1fZQoaAZHQHCQUo8ZDRdoB01YAWgIR0Caw4P1L8JldX2UKGgGR0BxmE+lj3EiaAdNQwFoCEdAmsRUcXFcZHV9lChoBkdAcsH4EfT1CmgHTT4BaAhHQJrEosTWXkZ1fZQoaAZHQG+qjohY/3ZoB00uAWgIR0CaxK8FpwjudX2UKGgGR0Bwd0+jdpIuaAdNIAFoCEdAmsWlRceKbnV9lChoBkdAcUch3qzJIWgHTUQBaAhHQJrGCXb/Ot51fZQoaAZHQHDe0GqxTsJoB01hAWgIR0CaxweGwiaBdX2UKGgGR0Bw1r8qFyq/aAdNOgFoCEdAmsgrnoxHoXV9lChoBkdAcOGv38GcF2gHTVYBaAhHQJrI0QI2OyV1fZQoaAZHQG361tO2y9poB02hAWgIR0Cayftix3V1dX2UKGgGR0BwnFRBNVR2aAdNVQFoCEdAmsonA6+36XV9lChoBkdAa/L655JK8WgHTRUBaAhHQJrLIALiMpB1fZQoaAZHQHHV6Ieo1k1oB00nAWgIR0Cay+Dh99c9dX2UKGgGR0Byb3yOJcgRaAdNGwFoCEdAmsvqUFB6bHV9lChoBkdAcC1Tj/+85GgHTTABaAhHQJrMKEi+tbN1fZQoaAZHQHE3RMFlkH5oB01FAWgIR0CazRwiaAnVdX2UKGgGR0BwOIzMzMzNaAdNOgFoCEdAms6mYKIBR3V9lChoBkdAcVNYU34sVmgHTTMBaAhHQJrOwpx3mmt1fZQoaAZHQG74iXhOxjdoB01YAWgIR0CaztmrKeTWdX2UKGgGR0ByKfsTnJT3aAdNSwFoCEdAms9yaZx7zHV9lChoBkdATHA0Q9RrJ2gHS/NoCEdAmtAIp+c6NnV9lChoBkdAcAdyc0+C9WgHTUgBaAhHQJrQsRujynV1fZQoaAZHQHIsa8lHBk9oB01nAWgIR0Ca0UkFwDNhdX2UKGgGR0Bx3WgvlEJCaAdNDQFoCEdAmtKcEJSiunV9lChoBkdAcFonYg7o0WgHTWQBaAhHQJrSnPzFuNx1fZQoaAZHQHDh9ehPCVNoB00PAWgIR0Ca0tfJ3gUDdX2UKGgGR0BKNAZCOWB0aAdL02gIR0Ca09zvZyuIdX2UKGgGR0Bx8nvrnkksaAdNZAFoCEdAmtRMwL3K0XV9lChoBkdAbxrt+kP+XWgHTSIBaAhHQJrVYre67NB1fZQoaAZHQHDLpJsfq5doB00rAWgIR0Ca1WMPjGT+dX2UKGgGR0BuSyreZXuFaAdNOwFoCEdAmtXdorWiDnV9lChoBkdAcf7mDUVi4WgHTXEBaAhHQJrWwE3bVSZ1fZQoaAZHQHHpb5AQg9xoB00NAWgIR0Ca6+T3qRlpdX2UKGgGR0BulXmT1TR6aAdNPQFoCEdAmu5nN5dGAnV9lChoBkdAcH1QBgeA/mgHTWsBaAhHQJrvUu3+dbx1fZQoaAZHQG2uM+FDfFdoB00wAWgIR0Ca73hcqvvCdX2UKGgGR0BuMQ9zOopAaAdNgwFoCEdAmvBQrUb1iHV9lChoBkdAcxCg1FYuCmgHTWcBaAhHQJrwtR0lqrR1fZQoaAZHQHCkXE/B3zNoB00iAWgIR0Ca8Qp+MIeHdX2UKGgGR0BusF9Sde6aaAdNNgFoCEdAmvGqaG5+Y3V9lChoBkdAcRulRP420mgHTTABaAhHQJryz6Hj6vd1fZQoaAZHQGzdKV6eGwloB01kAWgIR0Ca84VTJhfCdX2UKGgGR0BwyVKVY6n0aAdNUAFoCEdAmvRqfe1rqXV9lChoBkdAbaqaKDTScGgHTb8BaAhHQJr1GRV6u4h1fZQoaAZHQG3S2XTmW+poB01PAWgIR0Ca9ZBN21UmdX2UKGgGR0BwgffWMCLdaAdNLQFoCEdAmvZZjlPrOnV9lChoBkdAcFjEWqLjxWgHTWQBaAhHQJr20RlHz6J1fZQoaAZHQHJ1Nucc2itoB01JAWgIR0Ca9vLcbiqAdX2UKGgGR0BwOr9rGipOaAdNswFoCEdAmvjrqlgtvnV9lChoBkdAbz1WpZOi4GgHTS4BaAhHQJr5uNFSbYt1fZQoaAZHQHBLG/JvHcVoB01NAWgIR0Ca+f42S+xodX2UKGgGR0ByQypAD7qIaAdNKQFoCEdAmvvoekpI+XV9lChoBkdAcT6Jiy6cy2gHTVYBaAhHQJr8Dn/1g6V1fZQoaAZHQHIe8i0OVgRoB01uAWgIR0Ca/Blmvnr6dX2UKGgGR0Bx8llPJq7AaAdNhgFoCEdAmv766J66a3V9lChoBkdAcBkMj/uLJmgHTToBaAhHQJsAOYa5wwV1fZQoaAZHQHF5XAqNIbxoB01WAWgIR0CbAFOD8LrpdX2UKGgGR0BtbMf3evZAaAdNbAFoCEdAmwB67mMfinV9lChoBkdAcQ+yZ8a4t2gHTSkBaAhHQJsCJjoZAIJ1fZQoaAZHQG+sf1g6U7loB01SAWgIR0CbAvCQ9zOpdX2UKGgGR0BxURYRujynaAdNcAFoCEdAmwY6H0se4nV9lChoBkdAcVxXhOxja2gHTaIBaAhHQJsI1eSjgyd1fZQoaAZHQHAvcj/uLJloB01rAWgIR0CbCPoTwlSkdX2UKGgGR0Bv99fCyhSMaAdNWAFoCEdAmwluHzpX63V9lChoBkdAcwQpIczZYmgHTR4BaAhHQJsJeLbYbsF1fZQoaAZHQG75LO7g88toB02AAWgIR0CbCraXKKYRdX2UKGgGR0Bw4r6VMVUNaAdNQwFoCEdAmwrKPKdQPHV9lChoBkdAcTH5D7ZWaWgHTUQBaAhHQJsLAer+5vt1fZQoaAZHQHBuDTKDCgtoB00uAWgIR0CbDLpkPMB7dX2UKGgGR0Bw/tccENe/aAdNKAFoCEdAmw7lkpZwGXV9lChoBkdAchwf779AHGgHTWkBaAhHQJsQHxMFlkJ1fZQoaAZHQHDgAy2x6fJoB01zAWgIR0CbEFOI68xsdX2UKGgGR0Bwmpr9ETg3aAdNigFoCEdAmxE+PJaJRHV9lChoBkdAcWUBd2PkrGgHTWwBaAhHQJsSfuogmqp1fZQoaAZHQDg/qmj0tiBoB00NAWgIR0CbFB1JDmbLdX2UKGgGR0A/bQ+UyHmBaAdNAgFoCEdAmxQgBDG96HV9lChoBkdAbz2TmGM4tGgHTfMCaAhHQJsUlImPYFt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 256, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}