Boqian Shen commited on
Commit
56f7373
·
1 Parent(s): 56022bd

just a copy from Alpaca-Mar21 for upload

Browse files
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[PAD]": 32000
3
+ }
config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "../llama-7b-hf",
3
+ "architectures": [
4
+ "LLaMAForCausalLM"
5
+ ],
6
+ "bos_token_id": 0,
7
+ "eos_token_id": 1,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 4096,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_sequence_length": 2048,
13
+ "model_type": "llama",
14
+ "num_attention_heads": 32,
15
+ "num_hidden_layers": 32,
16
+ "pad_token_id": -1,
17
+ "rms_norm_eps": 1e-06,
18
+ "tie_word_embeddings": false,
19
+ "torch_dtype": "float32",
20
+ "transformers_version": "4.27.0.dev0",
21
+ "use_cache": true,
22
+ "vocab_size": 32001
23
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "eos_token_id": 1,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.27.0.dev0"
7
+ }
pytorch_model-00001-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:561107a4e6f55d8d45eb47d08b28b65163fe091b27a1f32d95e3759b11f55f64
3
+ size 9878004434
pytorch_model-00002-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea857f0a9d72ed274b2b6b39f0ac89e2d44758ac1f8f0719a722c4b896fdcf09
3
+ size 9894799542
pytorch_model-00003-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ffd2a8550323b8672b5936792686353d5d822f46806e3170ef2198c0c32d81ff
3
+ size 7181006073
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 26953699328
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00003-of-00003.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00003.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
16
+ "model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
17
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
18
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
19
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
20
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
21
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
22
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
23
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
24
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
25
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
26
+ "model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
27
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
28
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
29
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
30
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
31
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
32
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
33
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
34
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
35
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
36
+ "model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
37
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
38
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
39
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
40
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
41
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
42
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
43
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
44
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
45
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
46
+ "model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
47
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
48
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
49
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
50
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
51
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
52
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
53
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
54
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
55
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
56
+ "model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
57
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
58
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
59
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
60
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
61
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
62
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
63
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
64
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
65
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
66
+ "model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
67
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
68
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
69
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
70
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
71
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
72
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
73
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
74
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
75
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
76
+ "model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
77
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
78
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
79
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
80
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
81
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
82
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
83
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
84
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
85
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
86
+ "model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
87
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
88
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
89
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
90
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
91
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
92
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
93
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
94
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
95
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
96
+ "model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
97
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
98
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
99
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
100
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
101
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
102
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
103
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
104
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
105
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
106
+ "model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
107
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
108
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
109
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
110
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
111
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
112
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
113
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
114
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
115
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
116
+ "model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
117
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
118
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
119
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
120
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
121
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
122
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
123
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
124
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
125
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
126
+ "model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
127
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
128
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
129
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
130
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
131
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
132
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
133
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
134
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
135
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
136
+ "model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
137
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
138
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
139
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
140
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
141
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
142
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
143
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
144
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
145
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
146
+ "model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
147
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
148
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
149
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
150
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
151
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
152
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
153
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
154
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
155
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
156
+ "model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
157
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
158
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
159
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
160
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
161
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
162
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
163
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
164
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
165
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
166
+ "model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
167
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
168
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
169
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
170
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
171
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
172
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
173
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
174
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
175
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
176
+ "model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
177
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
178
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
179
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
180
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
181
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
182
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
183
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
184
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
185
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
186
+ "model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
187
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
188
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
189
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
190
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
191
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
192
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
193
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
194
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
195
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
196
+ "model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
197
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
198
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
199
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
200
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
201
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
202
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
203
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
204
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
205
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
206
+ "model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
207
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
208
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
209
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
210
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
211
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
212
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
213
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
214
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
215
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
216
+ "model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
217
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
218
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
219
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
220
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
221
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
222
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
223
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
224
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
225
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
226
+ "model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
227
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
228
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
229
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
230
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
231
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
232
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
233
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
234
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
235
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
236
+ "model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
237
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
238
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
239
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
240
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
241
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
242
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
243
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
244
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
245
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
246
+ "model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
247
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
248
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
249
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
250
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
251
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
252
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
253
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
254
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
255
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
256
+ "model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
257
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
258
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
259
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
260
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
261
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
262
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
263
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
264
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
265
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
266
+ "model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
267
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
268
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
269
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
270
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
271
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
272
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
273
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
274
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
275
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
276
+ "model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
277
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
278
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
279
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
280
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
281
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
282
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
283
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
284
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
285
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
286
+ "model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
287
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
288
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
289
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
290
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
291
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
292
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
293
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
294
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
295
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
296
+ "model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
297
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
298
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
299
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
300
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
301
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
302
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
303
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
304
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
305
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
306
+ "model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
307
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
308
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
309
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
310
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
311
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
312
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
313
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
314
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
315
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
316
+ "model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
317
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
318
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
319
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
320
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
321
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
322
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
323
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
324
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
325
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
326
+ "model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
327
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
328
+ "model.norm.weight": "pytorch_model-00003-of-00003.bin"
329
+ }
330
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "</s>",
3
+ "eos_token": "</s>",
4
+ "pad_token": "[PAD]",
5
+ "unk_token": "</s>"
6
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "",
3
+ "eos_token": "",
4
+ "model_max_length": 512,
5
+ "padding_side": "right",
6
+ "special_tokens_map_file": "../llama-7b-hf/special_tokens_map.json",
7
+ "tokenizer_class": "LLaMATokenizer",
8
+ "unk_token": ""
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,4237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.9984,
5
+ "global_step": 702,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.0,
12
+ "learning_rate": 9.090909090909091e-07,
13
+ "loss": 0.9416,
14
+ "step": 1
15
+ },
16
+ {
17
+ "epoch": 0.01,
18
+ "learning_rate": 1.8181818181818183e-06,
19
+ "loss": 0.9482,
20
+ "step": 2
21
+ },
22
+ {
23
+ "epoch": 0.01,
24
+ "learning_rate": 2.7272727272727272e-06,
25
+ "loss": 0.7529,
26
+ "step": 3
27
+ },
28
+ {
29
+ "epoch": 0.02,
30
+ "learning_rate": 3.6363636363636366e-06,
31
+ "loss": 0.7071,
32
+ "step": 4
33
+ },
34
+ {
35
+ "epoch": 0.02,
36
+ "learning_rate": 4.5454545454545455e-06,
37
+ "loss": 0.7033,
38
+ "step": 5
39
+ },
40
+ {
41
+ "epoch": 0.03,
42
+ "learning_rate": 5.4545454545454545e-06,
43
+ "loss": 0.6641,
44
+ "step": 6
45
+ },
46
+ {
47
+ "epoch": 0.03,
48
+ "learning_rate": 6.363636363636364e-06,
49
+ "loss": 0.6292,
50
+ "step": 7
51
+ },
52
+ {
53
+ "epoch": 0.03,
54
+ "learning_rate": 7.272727272727273e-06,
55
+ "loss": 0.6257,
56
+ "step": 8
57
+ },
58
+ {
59
+ "epoch": 0.04,
60
+ "learning_rate": 8.181818181818183e-06,
61
+ "loss": 0.5905,
62
+ "step": 9
63
+ },
64
+ {
65
+ "epoch": 0.04,
66
+ "learning_rate": 9.090909090909091e-06,
67
+ "loss": 0.6379,
68
+ "step": 10
69
+ },
70
+ {
71
+ "epoch": 0.05,
72
+ "learning_rate": 1e-05,
73
+ "loss": 0.5972,
74
+ "step": 11
75
+ },
76
+ {
77
+ "epoch": 0.05,
78
+ "learning_rate": 1.0909090909090909e-05,
79
+ "loss": 0.6028,
80
+ "step": 12
81
+ },
82
+ {
83
+ "epoch": 0.06,
84
+ "learning_rate": 1.181818181818182e-05,
85
+ "loss": 0.5902,
86
+ "step": 13
87
+ },
88
+ {
89
+ "epoch": 0.06,
90
+ "learning_rate": 1.2727272727272728e-05,
91
+ "loss": 0.6073,
92
+ "step": 14
93
+ },
94
+ {
95
+ "epoch": 0.06,
96
+ "learning_rate": 1.3636363636363637e-05,
97
+ "loss": 0.5989,
98
+ "step": 15
99
+ },
100
+ {
101
+ "epoch": 0.07,
102
+ "learning_rate": 1.4545454545454546e-05,
103
+ "loss": 0.5838,
104
+ "step": 16
105
+ },
106
+ {
107
+ "epoch": 0.07,
108
+ "learning_rate": 1.5454545454545454e-05,
109
+ "loss": 0.5778,
110
+ "step": 17
111
+ },
112
+ {
113
+ "epoch": 0.08,
114
+ "learning_rate": 1.6363636363636366e-05,
115
+ "loss": 0.6007,
116
+ "step": 18
117
+ },
118
+ {
119
+ "epoch": 0.08,
120
+ "learning_rate": 1.7272727272727274e-05,
121
+ "loss": 0.5941,
122
+ "step": 19
123
+ },
124
+ {
125
+ "epoch": 0.09,
126
+ "learning_rate": 1.8181818181818182e-05,
127
+ "loss": 0.6026,
128
+ "step": 20
129
+ },
130
+ {
131
+ "epoch": 0.09,
132
+ "learning_rate": 1.9090909090909094e-05,
133
+ "loss": 0.5882,
134
+ "step": 21
135
+ },
136
+ {
137
+ "epoch": 0.09,
138
+ "learning_rate": 2e-05,
139
+ "loss": 0.5822,
140
+ "step": 22
141
+ },
142
+ {
143
+ "epoch": 0.1,
144
+ "learning_rate": 1.999989327868895e-05,
145
+ "loss": 0.5918,
146
+ "step": 23
147
+ },
148
+ {
149
+ "epoch": 0.1,
150
+ "learning_rate": 1.999957311703368e-05,
151
+ "loss": 0.6018,
152
+ "step": 24
153
+ },
154
+ {
155
+ "epoch": 0.11,
156
+ "learning_rate": 1.999903952186781e-05,
157
+ "loss": 0.5785,
158
+ "step": 25
159
+ },
160
+ {
161
+ "epoch": 0.11,
162
+ "learning_rate": 1.9998292504580528e-05,
163
+ "loss": 0.5757,
164
+ "step": 26
165
+ },
166
+ {
167
+ "epoch": 0.12,
168
+ "learning_rate": 1.9997332081116374e-05,
169
+ "loss": 0.5742,
170
+ "step": 27
171
+ },
172
+ {
173
+ "epoch": 0.12,
174
+ "learning_rate": 1.9996158271974875e-05,
175
+ "loss": 0.597,
176
+ "step": 28
177
+ },
178
+ {
179
+ "epoch": 0.12,
180
+ "learning_rate": 1.9994771102210122e-05,
181
+ "loss": 0.5785,
182
+ "step": 29
183
+ },
184
+ {
185
+ "epoch": 0.13,
186
+ "learning_rate": 1.9993170601430233e-05,
187
+ "loss": 0.5649,
188
+ "step": 30
189
+ },
190
+ {
191
+ "epoch": 0.13,
192
+ "learning_rate": 1.999135680379671e-05,
193
+ "loss": 0.5869,
194
+ "step": 31
195
+ },
196
+ {
197
+ "epoch": 0.14,
198
+ "learning_rate": 1.9989329748023728e-05,
199
+ "loss": 0.5552,
200
+ "step": 32
201
+ },
202
+ {
203
+ "epoch": 0.14,
204
+ "learning_rate": 1.9987089477377293e-05,
205
+ "loss": 0.5808,
206
+ "step": 33
207
+ },
208
+ {
209
+ "epoch": 0.15,
210
+ "learning_rate": 1.9984636039674342e-05,
211
+ "loss": 0.6061,
212
+ "step": 34
213
+ },
214
+ {
215
+ "epoch": 0.15,
216
+ "learning_rate": 1.9981969487281678e-05,
217
+ "loss": 0.5559,
218
+ "step": 35
219
+ },
220
+ {
221
+ "epoch": 0.15,
222
+ "learning_rate": 1.9979089877114905e-05,
223
+ "loss": 0.5876,
224
+ "step": 36
225
+ },
226
+ {
227
+ "epoch": 0.16,
228
+ "learning_rate": 1.9975997270637172e-05,
229
+ "loss": 0.5647,
230
+ "step": 37
231
+ },
232
+ {
233
+ "epoch": 0.16,
234
+ "learning_rate": 1.997269173385788e-05,
235
+ "loss": 0.5751,
236
+ "step": 38
237
+ },
238
+ {
239
+ "epoch": 0.17,
240
+ "learning_rate": 1.9969173337331283e-05,
241
+ "loss": 0.5307,
242
+ "step": 39
243
+ },
244
+ {
245
+ "epoch": 0.17,
246
+ "learning_rate": 1.9965442156154947e-05,
247
+ "loss": 0.5695,
248
+ "step": 40
249
+ },
250
+ {
251
+ "epoch": 0.17,
252
+ "learning_rate": 1.9961498269968187e-05,
253
+ "loss": 0.5663,
254
+ "step": 41
255
+ },
256
+ {
257
+ "epoch": 0.18,
258
+ "learning_rate": 1.9957341762950346e-05,
259
+ "loss": 0.5816,
260
+ "step": 42
261
+ },
262
+ {
263
+ "epoch": 0.18,
264
+ "learning_rate": 1.9952972723819e-05,
265
+ "loss": 0.5434,
266
+ "step": 43
267
+ },
268
+ {
269
+ "epoch": 0.19,
270
+ "learning_rate": 1.994839124582806e-05,
271
+ "loss": 0.5448,
272
+ "step": 44
273
+ },
274
+ {
275
+ "epoch": 0.19,
276
+ "learning_rate": 1.9943597426765792e-05,
277
+ "loss": 0.5671,
278
+ "step": 45
279
+ },
280
+ {
281
+ "epoch": 0.2,
282
+ "learning_rate": 1.993859136895274e-05,
283
+ "loss": 0.5817,
284
+ "step": 46
285
+ },
286
+ {
287
+ "epoch": 0.2,
288
+ "learning_rate": 1.99333731792395e-05,
289
+ "loss": 0.5839,
290
+ "step": 47
291
+ },
292
+ {
293
+ "epoch": 0.2,
294
+ "learning_rate": 1.9927942969004493e-05,
295
+ "loss": 0.5718,
296
+ "step": 48
297
+ },
298
+ {
299
+ "epoch": 0.21,
300
+ "learning_rate": 1.992230085415154e-05,
301
+ "loss": 0.5695,
302
+ "step": 49
303
+ },
304
+ {
305
+ "epoch": 0.21,
306
+ "learning_rate": 1.991644695510743e-05,
307
+ "loss": 0.5453,
308
+ "step": 50
309
+ },
310
+ {
311
+ "epoch": 0.22,
312
+ "learning_rate": 1.9910381396819313e-05,
313
+ "loss": 0.5722,
314
+ "step": 51
315
+ },
316
+ {
317
+ "epoch": 0.22,
318
+ "learning_rate": 1.9904104308752053e-05,
319
+ "loss": 0.5952,
320
+ "step": 52
321
+ },
322
+ {
323
+ "epoch": 0.23,
324
+ "learning_rate": 1.989761582488547e-05,
325
+ "loss": 0.5541,
326
+ "step": 53
327
+ },
328
+ {
329
+ "epoch": 0.23,
330
+ "learning_rate": 1.9890916083711463e-05,
331
+ "loss": 0.5696,
332
+ "step": 54
333
+ },
334
+ {
335
+ "epoch": 0.23,
336
+ "learning_rate": 1.988400522823106e-05,
337
+ "loss": 0.5503,
338
+ "step": 55
339
+ },
340
+ {
341
+ "epoch": 0.24,
342
+ "learning_rate": 1.9876883405951378e-05,
343
+ "loss": 0.5573,
344
+ "step": 56
345
+ },
346
+ {
347
+ "epoch": 0.24,
348
+ "learning_rate": 1.986955076888246e-05,
349
+ "loss": 0.5636,
350
+ "step": 57
351
+ },
352
+ {
353
+ "epoch": 0.25,
354
+ "learning_rate": 1.9862007473534026e-05,
355
+ "loss": 0.5733,
356
+ "step": 58
357
+ },
358
+ {
359
+ "epoch": 0.25,
360
+ "learning_rate": 1.985425368091216e-05,
361
+ "loss": 0.551,
362
+ "step": 59
363
+ },
364
+ {
365
+ "epoch": 0.26,
366
+ "learning_rate": 1.9846289556515835e-05,
367
+ "loss": 0.5555,
368
+ "step": 60
369
+ },
370
+ {
371
+ "epoch": 0.26,
372
+ "learning_rate": 1.983811527033342e-05,
373
+ "loss": 0.5679,
374
+ "step": 61
375
+ },
376
+ {
377
+ "epoch": 0.26,
378
+ "learning_rate": 1.982973099683902e-05,
379
+ "loss": 0.5536,
380
+ "step": 62
381
+ },
382
+ {
383
+ "epoch": 0.27,
384
+ "learning_rate": 1.982113691498876e-05,
385
+ "loss": 0.5224,
386
+ "step": 63
387
+ },
388
+ {
389
+ "epoch": 0.27,
390
+ "learning_rate": 1.981233320821699e-05,
391
+ "loss": 0.5626,
392
+ "step": 64
393
+ },
394
+ {
395
+ "epoch": 0.28,
396
+ "learning_rate": 1.9803320064432318e-05,
397
+ "loss": 0.5411,
398
+ "step": 65
399
+ },
400
+ {
401
+ "epoch": 0.28,
402
+ "learning_rate": 1.979409767601366e-05,
403
+ "loss": 0.571,
404
+ "step": 66
405
+ },
406
+ {
407
+ "epoch": 0.29,
408
+ "learning_rate": 1.978466623980609e-05,
409
+ "loss": 0.5644,
410
+ "step": 67
411
+ },
412
+ {
413
+ "epoch": 0.29,
414
+ "learning_rate": 1.9775025957116657e-05,
415
+ "loss": 0.5574,
416
+ "step": 68
417
+ },
418
+ {
419
+ "epoch": 0.29,
420
+ "learning_rate": 1.976517703371008e-05,
421
+ "loss": 0.5805,
422
+ "step": 69
423
+ },
424
+ {
425
+ "epoch": 0.3,
426
+ "learning_rate": 1.975511967980437e-05,
427
+ "loss": 0.5731,
428
+ "step": 70
429
+ },
430
+ {
431
+ "epoch": 0.3,
432
+ "learning_rate": 1.9744854110066313e-05,
433
+ "loss": 0.5608,
434
+ "step": 71
435
+ },
436
+ {
437
+ "epoch": 0.31,
438
+ "learning_rate": 1.9734380543606932e-05,
439
+ "loss": 0.5722,
440
+ "step": 72
441
+ },
442
+ {
443
+ "epoch": 0.31,
444
+ "learning_rate": 1.9723699203976768e-05,
445
+ "loss": 0.5614,
446
+ "step": 73
447
+ },
448
+ {
449
+ "epoch": 0.32,
450
+ "learning_rate": 1.971281031916114e-05,
451
+ "loss": 0.555,
452
+ "step": 74
453
+ },
454
+ {
455
+ "epoch": 0.32,
456
+ "learning_rate": 1.970171412157526e-05,
457
+ "loss": 0.5342,
458
+ "step": 75
459
+ },
460
+ {
461
+ "epoch": 0.32,
462
+ "learning_rate": 1.9690410848059278e-05,
463
+ "loss": 0.5622,
464
+ "step": 76
465
+ },
466
+ {
467
+ "epoch": 0.33,
468
+ "learning_rate": 1.967890073987323e-05,
469
+ "loss": 0.5656,
470
+ "step": 77
471
+ },
472
+ {
473
+ "epoch": 0.33,
474
+ "learning_rate": 1.9667184042691877e-05,
475
+ "loss": 0.5773,
476
+ "step": 78
477
+ },
478
+ {
479
+ "epoch": 0.34,
480
+ "learning_rate": 1.9655261006599482e-05,
481
+ "loss": 0.5609,
482
+ "step": 79
483
+ },
484
+ {
485
+ "epoch": 0.34,
486
+ "learning_rate": 1.964313188608445e-05,
487
+ "loss": 0.5235,
488
+ "step": 80
489
+ },
490
+ {
491
+ "epoch": 0.35,
492
+ "learning_rate": 1.9630796940033913e-05,
493
+ "loss": 0.5379,
494
+ "step": 81
495
+ },
496
+ {
497
+ "epoch": 0.35,
498
+ "learning_rate": 1.961825643172819e-05,
499
+ "loss": 0.5545,
500
+ "step": 82
501
+ },
502
+ {
503
+ "epoch": 0.35,
504
+ "learning_rate": 1.9605510628835184e-05,
505
+ "loss": 0.5572,
506
+ "step": 83
507
+ },
508
+ {
509
+ "epoch": 0.36,
510
+ "learning_rate": 1.9592559803404652e-05,
511
+ "loss": 0.5723,
512
+ "step": 84
513
+ },
514
+ {
515
+ "epoch": 0.36,
516
+ "learning_rate": 1.9579404231862403e-05,
517
+ "loss": 0.5617,
518
+ "step": 85
519
+ },
520
+ {
521
+ "epoch": 0.37,
522
+ "learning_rate": 1.956604419500441e-05,
523
+ "loss": 0.5522,
524
+ "step": 86
525
+ },
526
+ {
527
+ "epoch": 0.37,
528
+ "learning_rate": 1.9552479977990802e-05,
529
+ "loss": 0.549,
530
+ "step": 87
531
+ },
532
+ {
533
+ "epoch": 0.38,
534
+ "learning_rate": 1.953871187033978e-05,
535
+ "loss": 0.5504,
536
+ "step": 88
537
+ },
538
+ {
539
+ "epoch": 0.38,
540
+ "learning_rate": 1.9524740165921454e-05,
541
+ "loss": 0.535,
542
+ "step": 89
543
+ },
544
+ {
545
+ "epoch": 0.38,
546
+ "learning_rate": 1.9510565162951538e-05,
547
+ "loss": 0.5456,
548
+ "step": 90
549
+ },
550
+ {
551
+ "epoch": 0.39,
552
+ "learning_rate": 1.9496187163985012e-05,
553
+ "loss": 0.5638,
554
+ "step": 91
555
+ },
556
+ {
557
+ "epoch": 0.39,
558
+ "learning_rate": 1.948160647590966e-05,
559
+ "loss": 0.5411,
560
+ "step": 92
561
+ },
562
+ {
563
+ "epoch": 0.4,
564
+ "learning_rate": 1.946682340993951e-05,
565
+ "loss": 0.5658,
566
+ "step": 93
567
+ },
568
+ {
569
+ "epoch": 0.4,
570
+ "learning_rate": 1.94518382816082e-05,
571
+ "loss": 0.5675,
572
+ "step": 94
573
+ },
574
+ {
575
+ "epoch": 0.41,
576
+ "learning_rate": 1.943665141076223e-05,
577
+ "loss": 0.5581,
578
+ "step": 95
579
+ },
580
+ {
581
+ "epoch": 0.41,
582
+ "learning_rate": 1.9421263121554163e-05,
583
+ "loss": 0.5541,
584
+ "step": 96
585
+ },
586
+ {
587
+ "epoch": 0.41,
588
+ "learning_rate": 1.9405673742435677e-05,
589
+ "loss": 0.5561,
590
+ "step": 97
591
+ },
592
+ {
593
+ "epoch": 0.42,
594
+ "learning_rate": 1.938988360615057e-05,
595
+ "loss": 0.548,
596
+ "step": 98
597
+ },
598
+ {
599
+ "epoch": 0.42,
600
+ "learning_rate": 1.9373893049727643e-05,
601
+ "loss": 0.5971,
602
+ "step": 99
603
+ },
604
+ {
605
+ "epoch": 0.43,
606
+ "learning_rate": 1.9357702414473528e-05,
607
+ "loss": 0.5381,
608
+ "step": 100
609
+ },
610
+ {
611
+ "epoch": 0.43,
612
+ "learning_rate": 1.934131204596539e-05,
613
+ "loss": 0.5466,
614
+ "step": 101
615
+ },
616
+ {
617
+ "epoch": 0.44,
618
+ "learning_rate": 1.932472229404356e-05,
619
+ "loss": 0.5573,
620
+ "step": 102
621
+ },
622
+ {
623
+ "epoch": 0.44,
624
+ "learning_rate": 1.930793351280404e-05,
625
+ "loss": 0.5586,
626
+ "step": 103
627
+ },
628
+ {
629
+ "epoch": 0.44,
630
+ "learning_rate": 1.9290946060590992e-05,
631
+ "loss": 0.5656,
632
+ "step": 104
633
+ },
634
+ {
635
+ "epoch": 0.45,
636
+ "learning_rate": 1.9273760299989036e-05,
637
+ "loss": 0.5665,
638
+ "step": 105
639
+ },
640
+ {
641
+ "epoch": 0.45,
642
+ "learning_rate": 1.9256376597815565e-05,
643
+ "loss": 0.5537,
644
+ "step": 106
645
+ },
646
+ {
647
+ "epoch": 0.46,
648
+ "learning_rate": 1.9238795325112867e-05,
649
+ "loss": 0.5554,
650
+ "step": 107
651
+ },
652
+ {
653
+ "epoch": 0.46,
654
+ "learning_rate": 1.9221016857140244e-05,
655
+ "loss": 0.5619,
656
+ "step": 108
657
+ },
658
+ {
659
+ "epoch": 0.47,
660
+ "learning_rate": 1.9203041573365978e-05,
661
+ "loss": 0.5511,
662
+ "step": 109
663
+ },
664
+ {
665
+ "epoch": 0.47,
666
+ "learning_rate": 1.9184869857459233e-05,
667
+ "loss": 0.5736,
668
+ "step": 110
669
+ },
670
+ {
671
+ "epoch": 0.47,
672
+ "learning_rate": 1.9166502097281882e-05,
673
+ "loss": 0.5298,
674
+ "step": 111
675
+ },
676
+ {
677
+ "epoch": 0.48,
678
+ "learning_rate": 1.9147938684880213e-05,
679
+ "loss": 0.5641,
680
+ "step": 112
681
+ },
682
+ {
683
+ "epoch": 0.48,
684
+ "learning_rate": 1.9129180016476568e-05,
685
+ "loss": 0.5501,
686
+ "step": 113
687
+ },
688
+ {
689
+ "epoch": 0.49,
690
+ "learning_rate": 1.9110226492460886e-05,
691
+ "loss": 0.5447,
692
+ "step": 114
693
+ },
694
+ {
695
+ "epoch": 0.49,
696
+ "learning_rate": 1.909107851738215e-05,
697
+ "loss": 0.5543,
698
+ "step": 115
699
+ },
700
+ {
701
+ "epoch": 0.49,
702
+ "learning_rate": 1.9071736499939765e-05,
703
+ "loss": 0.557,
704
+ "step": 116
705
+ },
706
+ {
707
+ "epoch": 0.5,
708
+ "learning_rate": 1.905220085297482e-05,
709
+ "loss": 0.5593,
710
+ "step": 117
711
+ },
712
+ {
713
+ "epoch": 0.5,
714
+ "learning_rate": 1.903247199346129e-05,
715
+ "loss": 0.5433,
716
+ "step": 118
717
+ },
718
+ {
719
+ "epoch": 0.51,
720
+ "learning_rate": 1.901255034249712e-05,
721
+ "loss": 0.5823,
722
+ "step": 119
723
+ },
724
+ {
725
+ "epoch": 0.51,
726
+ "learning_rate": 1.8992436325295258e-05,
727
+ "loss": 0.5636,
728
+ "step": 120
729
+ },
730
+ {
731
+ "epoch": 0.52,
732
+ "learning_rate": 1.8972130371174557e-05,
733
+ "loss": 0.5546,
734
+ "step": 121
735
+ },
736
+ {
737
+ "epoch": 0.52,
738
+ "learning_rate": 1.8951632913550625e-05,
739
+ "loss": 0.5701,
740
+ "step": 122
741
+ },
742
+ {
743
+ "epoch": 0.52,
744
+ "learning_rate": 1.8930944389926575e-05,
745
+ "loss": 0.529,
746
+ "step": 123
747
+ },
748
+ {
749
+ "epoch": 0.53,
750
+ "learning_rate": 1.891006524188368e-05,
751
+ "loss": 0.5446,
752
+ "step": 124
753
+ },
754
+ {
755
+ "epoch": 0.53,
756
+ "learning_rate": 1.888899591507195e-05,
757
+ "loss": 0.5565,
758
+ "step": 125
759
+ },
760
+ {
761
+ "epoch": 0.54,
762
+ "learning_rate": 1.886773685920062e-05,
763
+ "loss": 0.5722,
764
+ "step": 126
765
+ },
766
+ {
767
+ "epoch": 0.54,
768
+ "learning_rate": 1.8846288528028555e-05,
769
+ "loss": 0.5392,
770
+ "step": 127
771
+ },
772
+ {
773
+ "epoch": 0.55,
774
+ "learning_rate": 1.882465137935456e-05,
775
+ "loss": 0.5447,
776
+ "step": 128
777
+ },
778
+ {
779
+ "epoch": 0.55,
780
+ "learning_rate": 1.8802825875007604e-05,
781
+ "loss": 0.521,
782
+ "step": 129
783
+ },
784
+ {
785
+ "epoch": 0.55,
786
+ "learning_rate": 1.878081248083698e-05,
787
+ "loss": 0.5412,
788
+ "step": 130
789
+ },
790
+ {
791
+ "epoch": 0.56,
792
+ "learning_rate": 1.8758611666702347e-05,
793
+ "loss": 0.5437,
794
+ "step": 131
795
+ },
796
+ {
797
+ "epoch": 0.56,
798
+ "learning_rate": 1.8736223906463698e-05,
799
+ "loss": 0.5677,
800
+ "step": 132
801
+ },
802
+ {
803
+ "epoch": 0.57,
804
+ "learning_rate": 1.871364967797126e-05,
805
+ "loss": 0.5413,
806
+ "step": 133
807
+ },
808
+ {
809
+ "epoch": 0.57,
810
+ "learning_rate": 1.8690889463055285e-05,
811
+ "loss": 0.5573,
812
+ "step": 134
813
+ },
814
+ {
815
+ "epoch": 0.58,
816
+ "learning_rate": 1.866794374751577e-05,
817
+ "loss": 0.5483,
818
+ "step": 135
819
+ },
820
+ {
821
+ "epoch": 0.58,
822
+ "learning_rate": 1.864481302111208e-05,
823
+ "loss": 0.555,
824
+ "step": 136
825
+ },
826
+ {
827
+ "epoch": 0.58,
828
+ "learning_rate": 1.8621497777552508e-05,
829
+ "loss": 0.5243,
830
+ "step": 137
831
+ },
832
+ {
833
+ "epoch": 0.59,
834
+ "learning_rate": 1.8597998514483724e-05,
835
+ "loss": 0.5513,
836
+ "step": 138
837
+ },
838
+ {
839
+ "epoch": 0.59,
840
+ "learning_rate": 1.8574315733480165e-05,
841
+ "loss": 0.56,
842
+ "step": 139
843
+ },
844
+ {
845
+ "epoch": 0.6,
846
+ "learning_rate": 1.855044994003331e-05,
847
+ "loss": 0.5493,
848
+ "step": 140
849
+ },
850
+ {
851
+ "epoch": 0.6,
852
+ "learning_rate": 1.8526401643540924e-05,
853
+ "loss": 0.5401,
854
+ "step": 141
855
+ },
856
+ {
857
+ "epoch": 0.61,
858
+ "learning_rate": 1.8502171357296144e-05,
859
+ "loss": 0.5413,
860
+ "step": 142
861
+ },
862
+ {
863
+ "epoch": 0.61,
864
+ "learning_rate": 1.8477759598476556e-05,
865
+ "loss": 0.5539,
866
+ "step": 143
867
+ },
868
+ {
869
+ "epoch": 0.61,
870
+ "learning_rate": 1.845316688813314e-05,
871
+ "loss": 0.5612,
872
+ "step": 144
873
+ },
874
+ {
875
+ "epoch": 0.62,
876
+ "learning_rate": 1.8428393751179154e-05,
877
+ "loss": 0.5327,
878
+ "step": 145
879
+ },
880
+ {
881
+ "epoch": 0.62,
882
+ "learning_rate": 1.840344071637893e-05,
883
+ "loss": 0.53,
884
+ "step": 146
885
+ },
886
+ {
887
+ "epoch": 0.63,
888
+ "learning_rate": 1.8378308316336585e-05,
889
+ "loss": 0.551,
890
+ "step": 147
891
+ },
892
+ {
893
+ "epoch": 0.63,
894
+ "learning_rate": 1.8352997087484657e-05,
895
+ "loss": 0.5491,
896
+ "step": 148
897
+ },
898
+ {
899
+ "epoch": 0.64,
900
+ "learning_rate": 1.8327507570072648e-05,
901
+ "loss": 0.5721,
902
+ "step": 149
903
+ },
904
+ {
905
+ "epoch": 0.64,
906
+ "learning_rate": 1.8301840308155507e-05,
907
+ "loss": 0.5472,
908
+ "step": 150
909
+ },
910
+ {
911
+ "epoch": 0.64,
912
+ "learning_rate": 1.8275995849582e-05,
913
+ "loss": 0.547,
914
+ "step": 151
915
+ },
916
+ {
917
+ "epoch": 0.65,
918
+ "learning_rate": 1.8249974745983023e-05,
919
+ "loss": 0.5658,
920
+ "step": 152
921
+ },
922
+ {
923
+ "epoch": 0.65,
924
+ "learning_rate": 1.822377755275984e-05,
925
+ "loss": 0.5378,
926
+ "step": 153
927
+ },
928
+ {
929
+ "epoch": 0.66,
930
+ "learning_rate": 1.8197404829072214e-05,
931
+ "loss": 0.5139,
932
+ "step": 154
933
+ },
934
+ {
935
+ "epoch": 0.66,
936
+ "learning_rate": 1.8170857137826465e-05,
937
+ "loss": 0.5315,
938
+ "step": 155
939
+ },
940
+ {
941
+ "epoch": 0.67,
942
+ "learning_rate": 1.8144135045663486e-05,
943
+ "loss": 0.5363,
944
+ "step": 156
945
+ },
946
+ {
947
+ "epoch": 0.67,
948
+ "learning_rate": 1.8117239122946615e-05,
949
+ "loss": 0.5678,
950
+ "step": 157
951
+ },
952
+ {
953
+ "epoch": 0.67,
954
+ "learning_rate": 1.8090169943749477e-05,
955
+ "loss": 0.533,
956
+ "step": 158
957
+ },
958
+ {
959
+ "epoch": 0.68,
960
+ "learning_rate": 1.8062928085843732e-05,
961
+ "loss": 0.5161,
962
+ "step": 159
963
+ },
964
+ {
965
+ "epoch": 0.68,
966
+ "learning_rate": 1.8035514130686737e-05,
967
+ "loss": 0.5386,
968
+ "step": 160
969
+ },
970
+ {
971
+ "epoch": 0.69,
972
+ "learning_rate": 1.8007928663409148e-05,
973
+ "loss": 0.5504,
974
+ "step": 161
975
+ },
976
+ {
977
+ "epoch": 0.69,
978
+ "learning_rate": 1.7980172272802398e-05,
979
+ "loss": 0.5643,
980
+ "step": 162
981
+ },
982
+ {
983
+ "epoch": 0.7,
984
+ "learning_rate": 1.7952245551306173e-05,
985
+ "loss": 0.5495,
986
+ "step": 163
987
+ },
988
+ {
989
+ "epoch": 0.7,
990
+ "learning_rate": 1.792414909499574e-05,
991
+ "loss": 0.5485,
992
+ "step": 164
993
+ },
994
+ {
995
+ "epoch": 0.7,
996
+ "learning_rate": 1.7895883503569228e-05,
997
+ "loss": 0.5442,
998
+ "step": 165
999
+ },
1000
+ {
1001
+ "epoch": 0.71,
1002
+ "learning_rate": 1.7867449380334834e-05,
1003
+ "loss": 0.5239,
1004
+ "step": 166
1005
+ },
1006
+ {
1007
+ "epoch": 0.71,
1008
+ "learning_rate": 1.783884733219794e-05,
1009
+ "loss": 0.5673,
1010
+ "step": 167
1011
+ },
1012
+ {
1013
+ "epoch": 0.72,
1014
+ "learning_rate": 1.7810077969648157e-05,
1015
+ "loss": 0.5431,
1016
+ "step": 168
1017
+ },
1018
+ {
1019
+ "epoch": 0.72,
1020
+ "learning_rate": 1.7781141906746304e-05,
1021
+ "loss": 0.5535,
1022
+ "step": 169
1023
+ },
1024
+ {
1025
+ "epoch": 0.73,
1026
+ "learning_rate": 1.77520397611113e-05,
1027
+ "loss": 0.5522,
1028
+ "step": 170
1029
+ },
1030
+ {
1031
+ "epoch": 0.73,
1032
+ "learning_rate": 1.772277215390697e-05,
1033
+ "loss": 0.5336,
1034
+ "step": 171
1035
+ },
1036
+ {
1037
+ "epoch": 0.73,
1038
+ "learning_rate": 1.769333970982879e-05,
1039
+ "loss": 0.5594,
1040
+ "step": 172
1041
+ },
1042
+ {
1043
+ "epoch": 0.74,
1044
+ "learning_rate": 1.7663743057090572e-05,
1045
+ "loss": 0.5441,
1046
+ "step": 173
1047
+ },
1048
+ {
1049
+ "epoch": 0.74,
1050
+ "learning_rate": 1.763398282741103e-05,
1051
+ "loss": 0.5468,
1052
+ "step": 174
1053
+ },
1054
+ {
1055
+ "epoch": 0.75,
1056
+ "learning_rate": 1.7604059656000313e-05,
1057
+ "loss": 0.5624,
1058
+ "step": 175
1059
+ },
1060
+ {
1061
+ "epoch": 0.75,
1062
+ "learning_rate": 1.757397418154643e-05,
1063
+ "loss": 0.5574,
1064
+ "step": 176
1065
+ },
1066
+ {
1067
+ "epoch": 0.76,
1068
+ "learning_rate": 1.7543727046201642e-05,
1069
+ "loss": 0.5288,
1070
+ "step": 177
1071
+ },
1072
+ {
1073
+ "epoch": 0.76,
1074
+ "learning_rate": 1.7513318895568734e-05,
1075
+ "loss": 0.5243,
1076
+ "step": 178
1077
+ },
1078
+ {
1079
+ "epoch": 0.76,
1080
+ "learning_rate": 1.748275037868725e-05,
1081
+ "loss": 0.5303,
1082
+ "step": 179
1083
+ },
1084
+ {
1085
+ "epoch": 0.77,
1086
+ "learning_rate": 1.7452022148019626e-05,
1087
+ "loss": 0.5379,
1088
+ "step": 180
1089
+ },
1090
+ {
1091
+ "epoch": 0.77,
1092
+ "learning_rate": 1.742113485943728e-05,
1093
+ "loss": 0.5549,
1094
+ "step": 181
1095
+ },
1096
+ {
1097
+ "epoch": 0.78,
1098
+ "learning_rate": 1.7390089172206594e-05,
1099
+ "loss": 0.5797,
1100
+ "step": 182
1101
+ },
1102
+ {
1103
+ "epoch": 0.78,
1104
+ "learning_rate": 1.7358885748974853e-05,
1105
+ "loss": 0.5449,
1106
+ "step": 183
1107
+ },
1108
+ {
1109
+ "epoch": 0.79,
1110
+ "learning_rate": 1.7327525255756118e-05,
1111
+ "loss": 0.5135,
1112
+ "step": 184
1113
+ },
1114
+ {
1115
+ "epoch": 0.79,
1116
+ "learning_rate": 1.729600836191696e-05,
1117
+ "loss": 0.5091,
1118
+ "step": 185
1119
+ },
1120
+ {
1121
+ "epoch": 0.79,
1122
+ "learning_rate": 1.7264335740162244e-05,
1123
+ "loss": 0.5595,
1124
+ "step": 186
1125
+ },
1126
+ {
1127
+ "epoch": 0.8,
1128
+ "learning_rate": 1.7232508066520702e-05,
1129
+ "loss": 0.5471,
1130
+ "step": 187
1131
+ },
1132
+ {
1133
+ "epoch": 0.8,
1134
+ "learning_rate": 1.720052602033055e-05,
1135
+ "loss": 0.5352,
1136
+ "step": 188
1137
+ },
1138
+ {
1139
+ "epoch": 0.81,
1140
+ "learning_rate": 1.7168390284224964e-05,
1141
+ "loss": 0.5773,
1142
+ "step": 189
1143
+ },
1144
+ {
1145
+ "epoch": 0.81,
1146
+ "learning_rate": 1.7136101544117526e-05,
1147
+ "loss": 0.549,
1148
+ "step": 190
1149
+ },
1150
+ {
1151
+ "epoch": 0.81,
1152
+ "learning_rate": 1.710366048918757e-05,
1153
+ "loss": 0.5475,
1154
+ "step": 191
1155
+ },
1156
+ {
1157
+ "epoch": 0.82,
1158
+ "learning_rate": 1.7071067811865477e-05,
1159
+ "loss": 0.5415,
1160
+ "step": 192
1161
+ },
1162
+ {
1163
+ "epoch": 0.82,
1164
+ "learning_rate": 1.7038324207817902e-05,
1165
+ "loss": 0.576,
1166
+ "step": 193
1167
+ },
1168
+ {
1169
+ "epoch": 0.83,
1170
+ "learning_rate": 1.700543037593291e-05,
1171
+ "loss": 0.5513,
1172
+ "step": 194
1173
+ },
1174
+ {
1175
+ "epoch": 0.83,
1176
+ "learning_rate": 1.697238701830508e-05,
1177
+ "loss": 0.5276,
1178
+ "step": 195
1179
+ },
1180
+ {
1181
+ "epoch": 0.84,
1182
+ "learning_rate": 1.6939194840220497e-05,
1183
+ "loss": 0.5532,
1184
+ "step": 196
1185
+ },
1186
+ {
1187
+ "epoch": 0.84,
1188
+ "learning_rate": 1.6905854550141717e-05,
1189
+ "loss": 0.5214,
1190
+ "step": 197
1191
+ },
1192
+ {
1193
+ "epoch": 0.84,
1194
+ "learning_rate": 1.687236685969263e-05,
1195
+ "loss": 0.5288,
1196
+ "step": 198
1197
+ },
1198
+ {
1199
+ "epoch": 0.85,
1200
+ "learning_rate": 1.683873248364328e-05,
1201
+ "loss": 0.5464,
1202
+ "step": 199
1203
+ },
1204
+ {
1205
+ "epoch": 0.85,
1206
+ "learning_rate": 1.6804952139894618e-05,
1207
+ "loss": 0.5326,
1208
+ "step": 200
1209
+ },
1210
+ {
1211
+ "epoch": 0.86,
1212
+ "learning_rate": 1.6771026549463148e-05,
1213
+ "loss": 0.5424,
1214
+ "step": 201
1215
+ },
1216
+ {
1217
+ "epoch": 0.86,
1218
+ "learning_rate": 1.6736956436465573e-05,
1219
+ "loss": 0.5409,
1220
+ "step": 202
1221
+ },
1222
+ {
1223
+ "epoch": 0.87,
1224
+ "learning_rate": 1.6702742528103318e-05,
1225
+ "loss": 0.5317,
1226
+ "step": 203
1227
+ },
1228
+ {
1229
+ "epoch": 0.87,
1230
+ "learning_rate": 1.6668385554647017e-05,
1231
+ "loss": 0.5474,
1232
+ "step": 204
1233
+ },
1234
+ {
1235
+ "epoch": 0.87,
1236
+ "learning_rate": 1.6633886249420915e-05,
1237
+ "loss": 0.5521,
1238
+ "step": 205
1239
+ },
1240
+ {
1241
+ "epoch": 0.88,
1242
+ "learning_rate": 1.659924534878723e-05,
1243
+ "loss": 0.5564,
1244
+ "step": 206
1245
+ },
1246
+ {
1247
+ "epoch": 0.88,
1248
+ "learning_rate": 1.656446359213043e-05,
1249
+ "loss": 0.5636,
1250
+ "step": 207
1251
+ },
1252
+ {
1253
+ "epoch": 0.89,
1254
+ "learning_rate": 1.6529541721841444e-05,
1255
+ "loss": 0.5271,
1256
+ "step": 208
1257
+ },
1258
+ {
1259
+ "epoch": 0.89,
1260
+ "learning_rate": 1.6494480483301836e-05,
1261
+ "loss": 0.5573,
1262
+ "step": 209
1263
+ },
1264
+ {
1265
+ "epoch": 0.9,
1266
+ "learning_rate": 1.6459280624867876e-05,
1267
+ "loss": 0.5698,
1268
+ "step": 210
1269
+ },
1270
+ {
1271
+ "epoch": 0.9,
1272
+ "learning_rate": 1.642394289785456e-05,
1273
+ "loss": 0.5302,
1274
+ "step": 211
1275
+ },
1276
+ {
1277
+ "epoch": 0.9,
1278
+ "learning_rate": 1.638846805651961e-05,
1279
+ "loss": 0.5482,
1280
+ "step": 212
1281
+ },
1282
+ {
1283
+ "epoch": 0.91,
1284
+ "learning_rate": 1.6352856858047347e-05,
1285
+ "loss": 0.5426,
1286
+ "step": 213
1287
+ },
1288
+ {
1289
+ "epoch": 0.91,
1290
+ "learning_rate": 1.631711006253251e-05,
1291
+ "loss": 0.5608,
1292
+ "step": 214
1293
+ },
1294
+ {
1295
+ "epoch": 0.92,
1296
+ "learning_rate": 1.6281228432964092e-05,
1297
+ "loss": 0.5331,
1298
+ "step": 215
1299
+ },
1300
+ {
1301
+ "epoch": 0.92,
1302
+ "learning_rate": 1.6245212735208994e-05,
1303
+ "loss": 0.5287,
1304
+ "step": 216
1305
+ },
1306
+ {
1307
+ "epoch": 0.93,
1308
+ "learning_rate": 1.6209063737995716e-05,
1309
+ "loss": 0.5517,
1310
+ "step": 217
1311
+ },
1312
+ {
1313
+ "epoch": 0.93,
1314
+ "learning_rate": 1.617278221289793e-05,
1315
+ "loss": 0.5694,
1316
+ "step": 218
1317
+ },
1318
+ {
1319
+ "epoch": 0.93,
1320
+ "learning_rate": 1.6136368934318028e-05,
1321
+ "loss": 0.5162,
1322
+ "step": 219
1323
+ },
1324
+ {
1325
+ "epoch": 0.94,
1326
+ "learning_rate": 1.609982467947057e-05,
1327
+ "loss": 0.5519,
1328
+ "step": 220
1329
+ },
1330
+ {
1331
+ "epoch": 0.94,
1332
+ "learning_rate": 1.6063150228365712e-05,
1333
+ "loss": 0.5254,
1334
+ "step": 221
1335
+ },
1336
+ {
1337
+ "epoch": 0.95,
1338
+ "learning_rate": 1.6026346363792565e-05,
1339
+ "loss": 0.5543,
1340
+ "step": 222
1341
+ },
1342
+ {
1343
+ "epoch": 0.95,
1344
+ "learning_rate": 1.5989413871302456e-05,
1345
+ "loss": 0.5382,
1346
+ "step": 223
1347
+ },
1348
+ {
1349
+ "epoch": 0.96,
1350
+ "learning_rate": 1.595235353919219e-05,
1351
+ "loss": 0.5457,
1352
+ "step": 224
1353
+ },
1354
+ {
1355
+ "epoch": 0.96,
1356
+ "learning_rate": 1.5915166158487213e-05,
1357
+ "loss": 0.5254,
1358
+ "step": 225
1359
+ },
1360
+ {
1361
+ "epoch": 0.96,
1362
+ "learning_rate": 1.5877852522924733e-05,
1363
+ "loss": 0.5418,
1364
+ "step": 226
1365
+ },
1366
+ {
1367
+ "epoch": 0.97,
1368
+ "learning_rate": 1.5840413428936767e-05,
1369
+ "loss": 0.506,
1370
+ "step": 227
1371
+ },
1372
+ {
1373
+ "epoch": 0.97,
1374
+ "learning_rate": 1.580284967563316e-05,
1375
+ "loss": 0.5303,
1376
+ "step": 228
1377
+ },
1378
+ {
1379
+ "epoch": 0.98,
1380
+ "learning_rate": 1.5765162064784504e-05,
1381
+ "loss": 0.5404,
1382
+ "step": 229
1383
+ },
1384
+ {
1385
+ "epoch": 0.98,
1386
+ "learning_rate": 1.5727351400805054e-05,
1387
+ "loss": 0.5365,
1388
+ "step": 230
1389
+ },
1390
+ {
1391
+ "epoch": 0.99,
1392
+ "learning_rate": 1.5689418490735533e-05,
1393
+ "loss": 0.5582,
1394
+ "step": 231
1395
+ },
1396
+ {
1397
+ "epoch": 0.99,
1398
+ "learning_rate": 1.565136414422592e-05,
1399
+ "loss": 0.5701,
1400
+ "step": 232
1401
+ },
1402
+ {
1403
+ "epoch": 0.99,
1404
+ "learning_rate": 1.5613189173518167e-05,
1405
+ "loss": 0.5161,
1406
+ "step": 233
1407
+ },
1408
+ {
1409
+ "epoch": 1.0,
1410
+ "learning_rate": 1.5574894393428856e-05,
1411
+ "loss": 0.5359,
1412
+ "step": 234
1413
+ },
1414
+ {
1415
+ "epoch": 1.0,
1416
+ "learning_rate": 1.5536480621331818e-05,
1417
+ "loss": 0.5894,
1418
+ "step": 235
1419
+ },
1420
+ {
1421
+ "epoch": 1.01,
1422
+ "learning_rate": 1.5497948677140673e-05,
1423
+ "loss": 0.3695,
1424
+ "step": 236
1425
+ },
1426
+ {
1427
+ "epoch": 1.01,
1428
+ "learning_rate": 1.5459299383291347e-05,
1429
+ "loss": 0.3926,
1430
+ "step": 237
1431
+ },
1432
+ {
1433
+ "epoch": 1.02,
1434
+ "learning_rate": 1.5420533564724495e-05,
1435
+ "loss": 0.3781,
1436
+ "step": 238
1437
+ },
1438
+ {
1439
+ "epoch": 1.02,
1440
+ "learning_rate": 1.538165204886792e-05,
1441
+ "loss": 0.3832,
1442
+ "step": 239
1443
+ },
1444
+ {
1445
+ "epoch": 1.03,
1446
+ "learning_rate": 1.5342655665618885e-05,
1447
+ "loss": 0.3738,
1448
+ "step": 240
1449
+ },
1450
+ {
1451
+ "epoch": 1.03,
1452
+ "learning_rate": 1.5303545247326424e-05,
1453
+ "loss": 0.3741,
1454
+ "step": 241
1455
+ },
1456
+ {
1457
+ "epoch": 1.03,
1458
+ "learning_rate": 1.526432162877356e-05,
1459
+ "loss": 0.3788,
1460
+ "step": 242
1461
+ },
1462
+ {
1463
+ "epoch": 1.04,
1464
+ "learning_rate": 1.5224985647159489e-05,
1465
+ "loss": 0.3581,
1466
+ "step": 243
1467
+ },
1468
+ {
1469
+ "epoch": 1.04,
1470
+ "learning_rate": 1.5185538142081721e-05,
1471
+ "loss": 0.3723,
1472
+ "step": 244
1473
+ },
1474
+ {
1475
+ "epoch": 1.05,
1476
+ "learning_rate": 1.5145979955518147e-05,
1477
+ "loss": 0.3735,
1478
+ "step": 245
1479
+ },
1480
+ {
1481
+ "epoch": 1.05,
1482
+ "learning_rate": 1.510631193180907e-05,
1483
+ "loss": 0.3565,
1484
+ "step": 246
1485
+ },
1486
+ {
1487
+ "epoch": 1.06,
1488
+ "learning_rate": 1.5066534917639195e-05,
1489
+ "loss": 0.3862,
1490
+ "step": 247
1491
+ },
1492
+ {
1493
+ "epoch": 1.06,
1494
+ "learning_rate": 1.5026649762019539e-05,
1495
+ "loss": 0.3674,
1496
+ "step": 248
1497
+ },
1498
+ {
1499
+ "epoch": 1.06,
1500
+ "learning_rate": 1.498665731626932e-05,
1501
+ "loss": 0.3613,
1502
+ "step": 249
1503
+ },
1504
+ {
1505
+ "epoch": 1.07,
1506
+ "learning_rate": 1.4946558433997792e-05,
1507
+ "loss": 0.3823,
1508
+ "step": 250
1509
+ },
1510
+ {
1511
+ "epoch": 1.07,
1512
+ "learning_rate": 1.4906353971086004e-05,
1513
+ "loss": 0.3576,
1514
+ "step": 251
1515
+ },
1516
+ {
1517
+ "epoch": 1.08,
1518
+ "learning_rate": 1.4866044785668563e-05,
1519
+ "loss": 0.3627,
1520
+ "step": 252
1521
+ },
1522
+ {
1523
+ "epoch": 1.08,
1524
+ "learning_rate": 1.4825631738115289e-05,
1525
+ "loss": 0.3564,
1526
+ "step": 253
1527
+ },
1528
+ {
1529
+ "epoch": 1.09,
1530
+ "learning_rate": 1.4785115691012866e-05,
1531
+ "loss": 0.3501,
1532
+ "step": 254
1533
+ },
1534
+ {
1535
+ "epoch": 1.09,
1536
+ "learning_rate": 1.4744497509146427e-05,
1537
+ "loss": 0.3718,
1538
+ "step": 255
1539
+ },
1540
+ {
1541
+ "epoch": 1.09,
1542
+ "learning_rate": 1.4703778059481096e-05,
1543
+ "loss": 0.3506,
1544
+ "step": 256
1545
+ },
1546
+ {
1547
+ "epoch": 1.1,
1548
+ "learning_rate": 1.466295821114348e-05,
1549
+ "loss": 0.3617,
1550
+ "step": 257
1551
+ },
1552
+ {
1553
+ "epoch": 1.1,
1554
+ "learning_rate": 1.4622038835403135e-05,
1555
+ "loss": 0.3395,
1556
+ "step": 258
1557
+ },
1558
+ {
1559
+ "epoch": 1.11,
1560
+ "learning_rate": 1.4581020805653934e-05,
1561
+ "loss": 0.3638,
1562
+ "step": 259
1563
+ },
1564
+ {
1565
+ "epoch": 1.11,
1566
+ "learning_rate": 1.4539904997395468e-05,
1567
+ "loss": 0.3685,
1568
+ "step": 260
1569
+ },
1570
+ {
1571
+ "epoch": 1.12,
1572
+ "learning_rate": 1.449869228821433e-05,
1573
+ "loss": 0.3566,
1574
+ "step": 261
1575
+ },
1576
+ {
1577
+ "epoch": 1.12,
1578
+ "learning_rate": 1.4457383557765385e-05,
1579
+ "loss": 0.3614,
1580
+ "step": 262
1581
+ },
1582
+ {
1583
+ "epoch": 1.12,
1584
+ "learning_rate": 1.441597968775301e-05,
1585
+ "loss": 0.3516,
1586
+ "step": 263
1587
+ },
1588
+ {
1589
+ "epoch": 1.13,
1590
+ "learning_rate": 1.4374481561912266e-05,
1591
+ "loss": 0.356,
1592
+ "step": 264
1593
+ },
1594
+ {
1595
+ "epoch": 1.13,
1596
+ "learning_rate": 1.4332890065990027e-05,
1597
+ "loss": 0.3582,
1598
+ "step": 265
1599
+ },
1600
+ {
1601
+ "epoch": 1.14,
1602
+ "learning_rate": 1.429120608772609e-05,
1603
+ "loss": 0.3485,
1604
+ "step": 266
1605
+ },
1606
+ {
1607
+ "epoch": 1.14,
1608
+ "learning_rate": 1.4249430516834222e-05,
1609
+ "loss": 0.3578,
1610
+ "step": 267
1611
+ },
1612
+ {
1613
+ "epoch": 1.15,
1614
+ "learning_rate": 1.4207564244983154e-05,
1615
+ "loss": 0.3367,
1616
+ "step": 268
1617
+ },
1618
+ {
1619
+ "epoch": 1.15,
1620
+ "learning_rate": 1.4165608165777574e-05,
1621
+ "loss": 0.3614,
1622
+ "step": 269
1623
+ },
1624
+ {
1625
+ "epoch": 1.15,
1626
+ "learning_rate": 1.4123563174739036e-05,
1627
+ "loss": 0.3734,
1628
+ "step": 270
1629
+ },
1630
+ {
1631
+ "epoch": 1.16,
1632
+ "learning_rate": 1.4081430169286859e-05,
1633
+ "loss": 0.3608,
1634
+ "step": 271
1635
+ },
1636
+ {
1637
+ "epoch": 1.16,
1638
+ "learning_rate": 1.403921004871895e-05,
1639
+ "loss": 0.3453,
1640
+ "step": 272
1641
+ },
1642
+ {
1643
+ "epoch": 1.17,
1644
+ "learning_rate": 1.3996903714192643e-05,
1645
+ "loss": 0.3493,
1646
+ "step": 273
1647
+ },
1648
+ {
1649
+ "epoch": 1.17,
1650
+ "learning_rate": 1.3954512068705425e-05,
1651
+ "loss": 0.3603,
1652
+ "step": 274
1653
+ },
1654
+ {
1655
+ "epoch": 1.17,
1656
+ "learning_rate": 1.3912036017075703e-05,
1657
+ "loss": 0.3483,
1658
+ "step": 275
1659
+ },
1660
+ {
1661
+ "epoch": 1.18,
1662
+ "learning_rate": 1.3869476465923455e-05,
1663
+ "loss": 0.3334,
1664
+ "step": 276
1665
+ },
1666
+ {
1667
+ "epoch": 1.18,
1668
+ "learning_rate": 1.3826834323650899e-05,
1669
+ "loss": 0.3466,
1670
+ "step": 277
1671
+ },
1672
+ {
1673
+ "epoch": 1.19,
1674
+ "learning_rate": 1.3784110500423104e-05,
1675
+ "loss": 0.3654,
1676
+ "step": 278
1677
+ },
1678
+ {
1679
+ "epoch": 1.19,
1680
+ "learning_rate": 1.3741305908148555e-05,
1681
+ "loss": 0.3377,
1682
+ "step": 279
1683
+ },
1684
+ {
1685
+ "epoch": 1.2,
1686
+ "learning_rate": 1.3698421460459692e-05,
1687
+ "loss": 0.3522,
1688
+ "step": 280
1689
+ },
1690
+ {
1691
+ "epoch": 1.2,
1692
+ "learning_rate": 1.3655458072693413e-05,
1693
+ "loss": 0.3414,
1694
+ "step": 281
1695
+ },
1696
+ {
1697
+ "epoch": 1.2,
1698
+ "learning_rate": 1.3612416661871532e-05,
1699
+ "loss": 0.3751,
1700
+ "step": 282
1701
+ },
1702
+ {
1703
+ "epoch": 1.21,
1704
+ "learning_rate": 1.3569298146681202e-05,
1705
+ "loss": 0.3613,
1706
+ "step": 283
1707
+ },
1708
+ {
1709
+ "epoch": 1.21,
1710
+ "learning_rate": 1.3526103447455326e-05,
1711
+ "loss": 0.3503,
1712
+ "step": 284
1713
+ },
1714
+ {
1715
+ "epoch": 1.22,
1716
+ "learning_rate": 1.3482833486152886e-05,
1717
+ "loss": 0.3773,
1718
+ "step": 285
1719
+ },
1720
+ {
1721
+ "epoch": 1.22,
1722
+ "learning_rate": 1.3439489186339283e-05,
1723
+ "loss": 0.36,
1724
+ "step": 286
1725
+ },
1726
+ {
1727
+ "epoch": 1.23,
1728
+ "learning_rate": 1.3396071473166614e-05,
1729
+ "loss": 0.3439,
1730
+ "step": 287
1731
+ },
1732
+ {
1733
+ "epoch": 1.23,
1734
+ "learning_rate": 1.335258127335394e-05,
1735
+ "loss": 0.3173,
1736
+ "step": 288
1737
+ },
1738
+ {
1739
+ "epoch": 1.23,
1740
+ "learning_rate": 1.3309019515167481e-05,
1741
+ "loss": 0.3654,
1742
+ "step": 289
1743
+ },
1744
+ {
1745
+ "epoch": 1.24,
1746
+ "learning_rate": 1.3265387128400833e-05,
1747
+ "loss": 0.3665,
1748
+ "step": 290
1749
+ },
1750
+ {
1751
+ "epoch": 1.24,
1752
+ "learning_rate": 1.3221685044355099e-05,
1753
+ "loss": 0.3677,
1754
+ "step": 291
1755
+ },
1756
+ {
1757
+ "epoch": 1.25,
1758
+ "learning_rate": 1.3177914195819018e-05,
1759
+ "loss": 0.3529,
1760
+ "step": 292
1761
+ },
1762
+ {
1763
+ "epoch": 1.25,
1764
+ "learning_rate": 1.3134075517049059e-05,
1765
+ "loss": 0.3478,
1766
+ "step": 293
1767
+ },
1768
+ {
1769
+ "epoch": 1.26,
1770
+ "learning_rate": 1.3090169943749475e-05,
1771
+ "loss": 0.3426,
1772
+ "step": 294
1773
+ },
1774
+ {
1775
+ "epoch": 1.26,
1776
+ "learning_rate": 1.3046198413052337e-05,
1777
+ "loss": 0.3622,
1778
+ "step": 295
1779
+ },
1780
+ {
1781
+ "epoch": 1.26,
1782
+ "learning_rate": 1.3002161863497529e-05,
1783
+ "loss": 0.3359,
1784
+ "step": 296
1785
+ },
1786
+ {
1787
+ "epoch": 1.27,
1788
+ "learning_rate": 1.2958061235012707e-05,
1789
+ "loss": 0.3486,
1790
+ "step": 297
1791
+ },
1792
+ {
1793
+ "epoch": 1.27,
1794
+ "learning_rate": 1.2913897468893249e-05,
1795
+ "loss": 0.3775,
1796
+ "step": 298
1797
+ },
1798
+ {
1799
+ "epoch": 1.28,
1800
+ "learning_rate": 1.286967150778216e-05,
1801
+ "loss": 0.3654,
1802
+ "step": 299
1803
+ },
1804
+ {
1805
+ "epoch": 1.28,
1806
+ "learning_rate": 1.2825384295649952e-05,
1807
+ "loss": 0.3525,
1808
+ "step": 300
1809
+ },
1810
+ {
1811
+ "epoch": 1.29,
1812
+ "learning_rate": 1.2781036777774492e-05,
1813
+ "loss": 0.3499,
1814
+ "step": 301
1815
+ },
1816
+ {
1817
+ "epoch": 1.29,
1818
+ "learning_rate": 1.2736629900720832e-05,
1819
+ "loss": 0.334,
1820
+ "step": 302
1821
+ },
1822
+ {
1823
+ "epoch": 1.29,
1824
+ "learning_rate": 1.2692164612320997e-05,
1825
+ "loss": 0.3556,
1826
+ "step": 303
1827
+ },
1828
+ {
1829
+ "epoch": 1.3,
1830
+ "learning_rate": 1.2647641861653759e-05,
1831
+ "loss": 0.3568,
1832
+ "step": 304
1833
+ },
1834
+ {
1835
+ "epoch": 1.3,
1836
+ "learning_rate": 1.260306259902439e-05,
1837
+ "loss": 0.3623,
1838
+ "step": 305
1839
+ },
1840
+ {
1841
+ "epoch": 1.31,
1842
+ "learning_rate": 1.2558427775944357e-05,
1843
+ "loss": 0.3686,
1844
+ "step": 306
1845
+ },
1846
+ {
1847
+ "epoch": 1.31,
1848
+ "learning_rate": 1.2513738345111029e-05,
1849
+ "loss": 0.3556,
1850
+ "step": 307
1851
+ },
1852
+ {
1853
+ "epoch": 1.32,
1854
+ "learning_rate": 1.2468995260387332e-05,
1855
+ "loss": 0.3657,
1856
+ "step": 308
1857
+ },
1858
+ {
1859
+ "epoch": 1.32,
1860
+ "learning_rate": 1.2424199476781403e-05,
1861
+ "loss": 0.3584,
1862
+ "step": 309
1863
+ },
1864
+ {
1865
+ "epoch": 1.32,
1866
+ "learning_rate": 1.2379351950426188e-05,
1867
+ "loss": 0.3501,
1868
+ "step": 310
1869
+ },
1870
+ {
1871
+ "epoch": 1.33,
1872
+ "learning_rate": 1.2334453638559057e-05,
1873
+ "loss": 0.3391,
1874
+ "step": 311
1875
+ },
1876
+ {
1877
+ "epoch": 1.33,
1878
+ "learning_rate": 1.2289505499501341e-05,
1879
+ "loss": 0.3726,
1880
+ "step": 312
1881
+ },
1882
+ {
1883
+ "epoch": 1.34,
1884
+ "learning_rate": 1.2244508492637914e-05,
1885
+ "loss": 0.3576,
1886
+ "step": 313
1887
+ },
1888
+ {
1889
+ "epoch": 1.34,
1890
+ "learning_rate": 1.2199463578396688e-05,
1891
+ "loss": 0.3652,
1892
+ "step": 314
1893
+ },
1894
+ {
1895
+ "epoch": 1.35,
1896
+ "learning_rate": 1.2154371718228119e-05,
1897
+ "loss": 0.3507,
1898
+ "step": 315
1899
+ },
1900
+ {
1901
+ "epoch": 1.35,
1902
+ "learning_rate": 1.21092338745847e-05,
1903
+ "loss": 0.35,
1904
+ "step": 316
1905
+ },
1906
+ {
1907
+ "epoch": 1.35,
1908
+ "learning_rate": 1.2064051010900397e-05,
1909
+ "loss": 0.3726,
1910
+ "step": 317
1911
+ },
1912
+ {
1913
+ "epoch": 1.36,
1914
+ "learning_rate": 1.2018824091570103e-05,
1915
+ "loss": 0.3502,
1916
+ "step": 318
1917
+ },
1918
+ {
1919
+ "epoch": 1.36,
1920
+ "learning_rate": 1.1973554081929042e-05,
1921
+ "loss": 0.3557,
1922
+ "step": 319
1923
+ },
1924
+ {
1925
+ "epoch": 1.37,
1926
+ "learning_rate": 1.192824194823217e-05,
1927
+ "loss": 0.3573,
1928
+ "step": 320
1929
+ },
1930
+ {
1931
+ "epoch": 1.37,
1932
+ "learning_rate": 1.188288865763355e-05,
1933
+ "loss": 0.3452,
1934
+ "step": 321
1935
+ },
1936
+ {
1937
+ "epoch": 1.38,
1938
+ "learning_rate": 1.1837495178165706e-05,
1939
+ "loss": 0.357,
1940
+ "step": 322
1941
+ },
1942
+ {
1943
+ "epoch": 1.38,
1944
+ "learning_rate": 1.179206247871897e-05,
1945
+ "loss": 0.3538,
1946
+ "step": 323
1947
+ },
1948
+ {
1949
+ "epoch": 1.38,
1950
+ "learning_rate": 1.1746591529020789e-05,
1951
+ "loss": 0.3784,
1952
+ "step": 324
1953
+ },
1954
+ {
1955
+ "epoch": 1.39,
1956
+ "learning_rate": 1.170108329961504e-05,
1957
+ "loss": 0.3513,
1958
+ "step": 325
1959
+ },
1960
+ {
1961
+ "epoch": 1.39,
1962
+ "learning_rate": 1.16555387618413e-05,
1963
+ "loss": 0.3761,
1964
+ "step": 326
1965
+ },
1966
+ {
1967
+ "epoch": 1.4,
1968
+ "learning_rate": 1.160995888781413e-05,
1969
+ "loss": 0.3459,
1970
+ "step": 327
1971
+ },
1972
+ {
1973
+ "epoch": 1.4,
1974
+ "learning_rate": 1.156434465040231e-05,
1975
+ "loss": 0.3389,
1976
+ "step": 328
1977
+ },
1978
+ {
1979
+ "epoch": 1.41,
1980
+ "learning_rate": 1.1518697023208085e-05,
1981
+ "loss": 0.3505,
1982
+ "step": 329
1983
+ },
1984
+ {
1985
+ "epoch": 1.41,
1986
+ "learning_rate": 1.1473016980546377e-05,
1987
+ "loss": 0.3503,
1988
+ "step": 330
1989
+ },
1990
+ {
1991
+ "epoch": 1.41,
1992
+ "learning_rate": 1.1427305497423995e-05,
1993
+ "loss": 0.3374,
1994
+ "step": 331
1995
+ },
1996
+ {
1997
+ "epoch": 1.42,
1998
+ "learning_rate": 1.1381563549518823e-05,
1999
+ "loss": 0.3464,
2000
+ "step": 332
2001
+ },
2002
+ {
2003
+ "epoch": 1.42,
2004
+ "learning_rate": 1.133579211315899e-05,
2005
+ "loss": 0.3542,
2006
+ "step": 333
2007
+ },
2008
+ {
2009
+ "epoch": 1.43,
2010
+ "learning_rate": 1.1289992165302036e-05,
2011
+ "loss": 0.332,
2012
+ "step": 334
2013
+ },
2014
+ {
2015
+ "epoch": 1.43,
2016
+ "learning_rate": 1.1244164683514055e-05,
2017
+ "loss": 0.3637,
2018
+ "step": 335
2019
+ },
2020
+ {
2021
+ "epoch": 1.44,
2022
+ "learning_rate": 1.1198310645948833e-05,
2023
+ "loss": 0.3593,
2024
+ "step": 336
2025
+ },
2026
+ {
2027
+ "epoch": 1.44,
2028
+ "learning_rate": 1.1152431031326978e-05,
2029
+ "loss": 0.3543,
2030
+ "step": 337
2031
+ },
2032
+ {
2033
+ "epoch": 1.44,
2034
+ "learning_rate": 1.1106526818915008e-05,
2035
+ "loss": 0.3507,
2036
+ "step": 338
2037
+ },
2038
+ {
2039
+ "epoch": 1.45,
2040
+ "learning_rate": 1.1060598988504476e-05,
2041
+ "loss": 0.356,
2042
+ "step": 339
2043
+ },
2044
+ {
2045
+ "epoch": 1.45,
2046
+ "learning_rate": 1.1014648520391031e-05,
2047
+ "loss": 0.3703,
2048
+ "step": 340
2049
+ },
2050
+ {
2051
+ "epoch": 1.46,
2052
+ "learning_rate": 1.0968676395353514e-05,
2053
+ "loss": 0.3566,
2054
+ "step": 341
2055
+ },
2056
+ {
2057
+ "epoch": 1.46,
2058
+ "learning_rate": 1.092268359463302e-05,
2059
+ "loss": 0.3576,
2060
+ "step": 342
2061
+ },
2062
+ {
2063
+ "epoch": 1.47,
2064
+ "learning_rate": 1.0876671099911947e-05,
2065
+ "loss": 0.3283,
2066
+ "step": 343
2067
+ },
2068
+ {
2069
+ "epoch": 1.47,
2070
+ "learning_rate": 1.083063989329304e-05,
2071
+ "loss": 0.3381,
2072
+ "step": 344
2073
+ },
2074
+ {
2075
+ "epoch": 1.47,
2076
+ "learning_rate": 1.0784590957278452e-05,
2077
+ "loss": 0.3484,
2078
+ "step": 345
2079
+ },
2080
+ {
2081
+ "epoch": 1.48,
2082
+ "learning_rate": 1.073852527474874e-05,
2083
+ "loss": 0.3626,
2084
+ "step": 346
2085
+ },
2086
+ {
2087
+ "epoch": 1.48,
2088
+ "learning_rate": 1.0692443828941918e-05,
2089
+ "loss": 0.3448,
2090
+ "step": 347
2091
+ },
2092
+ {
2093
+ "epoch": 1.49,
2094
+ "learning_rate": 1.0646347603432443e-05,
2095
+ "loss": 0.3493,
2096
+ "step": 348
2097
+ },
2098
+ {
2099
+ "epoch": 1.49,
2100
+ "learning_rate": 1.0600237582110244e-05,
2101
+ "loss": 0.3412,
2102
+ "step": 349
2103
+ },
2104
+ {
2105
+ "epoch": 1.49,
2106
+ "learning_rate": 1.05541147491597e-05,
2107
+ "loss": 0.3635,
2108
+ "step": 350
2109
+ },
2110
+ {
2111
+ "epoch": 1.5,
2112
+ "learning_rate": 1.0507980089038659e-05,
2113
+ "loss": 0.37,
2114
+ "step": 351
2115
+ },
2116
+ {
2117
+ "epoch": 1.5,
2118
+ "learning_rate": 1.0461834586457398e-05,
2119
+ "loss": 0.3623,
2120
+ "step": 352
2121
+ },
2122
+ {
2123
+ "epoch": 1.51,
2124
+ "learning_rate": 1.0415679226357627e-05,
2125
+ "loss": 0.3632,
2126
+ "step": 353
2127
+ },
2128
+ {
2129
+ "epoch": 1.51,
2130
+ "learning_rate": 1.0369514993891451e-05,
2131
+ "loss": 0.3418,
2132
+ "step": 354
2133
+ },
2134
+ {
2135
+ "epoch": 1.52,
2136
+ "learning_rate": 1.0323342874400358e-05,
2137
+ "loss": 0.3623,
2138
+ "step": 355
2139
+ },
2140
+ {
2141
+ "epoch": 1.52,
2142
+ "learning_rate": 1.0277163853394166e-05,
2143
+ "loss": 0.332,
2144
+ "step": 356
2145
+ },
2146
+ {
2147
+ "epoch": 1.52,
2148
+ "learning_rate": 1.0230978916530012e-05,
2149
+ "loss": 0.3551,
2150
+ "step": 357
2151
+ },
2152
+ {
2153
+ "epoch": 1.53,
2154
+ "learning_rate": 1.01847890495913e-05,
2155
+ "loss": 0.3285,
2156
+ "step": 358
2157
+ },
2158
+ {
2159
+ "epoch": 1.53,
2160
+ "learning_rate": 1.0138595238466659e-05,
2161
+ "loss": 0.3577,
2162
+ "step": 359
2163
+ },
2164
+ {
2165
+ "epoch": 1.54,
2166
+ "learning_rate": 1.009239846912891e-05,
2167
+ "loss": 0.36,
2168
+ "step": 360
2169
+ },
2170
+ {
2171
+ "epoch": 1.54,
2172
+ "learning_rate": 1.0046199727614005e-05,
2173
+ "loss": 0.3526,
2174
+ "step": 361
2175
+ },
2176
+ {
2177
+ "epoch": 1.55,
2178
+ "learning_rate": 1e-05,
2179
+ "loss": 0.3417,
2180
+ "step": 362
2181
+ },
2182
+ {
2183
+ "epoch": 1.55,
2184
+ "learning_rate": 9.953800272385997e-06,
2185
+ "loss": 0.3405,
2186
+ "step": 363
2187
+ },
2188
+ {
2189
+ "epoch": 1.55,
2190
+ "learning_rate": 9.907601530871094e-06,
2191
+ "loss": 0.3688,
2192
+ "step": 364
2193
+ },
2194
+ {
2195
+ "epoch": 1.56,
2196
+ "learning_rate": 9.861404761533343e-06,
2197
+ "loss": 0.3488,
2198
+ "step": 365
2199
+ },
2200
+ {
2201
+ "epoch": 1.56,
2202
+ "learning_rate": 9.815210950408703e-06,
2203
+ "loss": 0.3659,
2204
+ "step": 366
2205
+ },
2206
+ {
2207
+ "epoch": 1.57,
2208
+ "learning_rate": 9.769021083469991e-06,
2209
+ "loss": 0.3509,
2210
+ "step": 367
2211
+ },
2212
+ {
2213
+ "epoch": 1.57,
2214
+ "learning_rate": 9.722836146605838e-06,
2215
+ "loss": 0.3582,
2216
+ "step": 368
2217
+ },
2218
+ {
2219
+ "epoch": 1.58,
2220
+ "learning_rate": 9.676657125599649e-06,
2221
+ "loss": 0.3291,
2222
+ "step": 369
2223
+ },
2224
+ {
2225
+ "epoch": 1.58,
2226
+ "learning_rate": 9.630485006108554e-06,
2227
+ "loss": 0.3261,
2228
+ "step": 370
2229
+ },
2230
+ {
2231
+ "epoch": 1.58,
2232
+ "learning_rate": 9.58432077364238e-06,
2233
+ "loss": 0.3595,
2234
+ "step": 371
2235
+ },
2236
+ {
2237
+ "epoch": 1.59,
2238
+ "learning_rate": 9.538165413542607e-06,
2239
+ "loss": 0.3546,
2240
+ "step": 372
2241
+ },
2242
+ {
2243
+ "epoch": 1.59,
2244
+ "learning_rate": 9.492019910961345e-06,
2245
+ "loss": 0.3386,
2246
+ "step": 373
2247
+ },
2248
+ {
2249
+ "epoch": 1.6,
2250
+ "learning_rate": 9.445885250840301e-06,
2251
+ "loss": 0.3614,
2252
+ "step": 374
2253
+ },
2254
+ {
2255
+ "epoch": 1.6,
2256
+ "learning_rate": 9.39976241788976e-06,
2257
+ "loss": 0.3525,
2258
+ "step": 375
2259
+ },
2260
+ {
2261
+ "epoch": 1.61,
2262
+ "learning_rate": 9.353652396567558e-06,
2263
+ "loss": 0.3525,
2264
+ "step": 376
2265
+ },
2266
+ {
2267
+ "epoch": 1.61,
2268
+ "learning_rate": 9.307556171058085e-06,
2269
+ "loss": 0.3438,
2270
+ "step": 377
2271
+ },
2272
+ {
2273
+ "epoch": 1.61,
2274
+ "learning_rate": 9.261474725251261e-06,
2275
+ "loss": 0.3384,
2276
+ "step": 378
2277
+ },
2278
+ {
2279
+ "epoch": 1.62,
2280
+ "learning_rate": 9.215409042721553e-06,
2281
+ "loss": 0.337,
2282
+ "step": 379
2283
+ },
2284
+ {
2285
+ "epoch": 1.62,
2286
+ "learning_rate": 9.169360106706962e-06,
2287
+ "loss": 0.3443,
2288
+ "step": 380
2289
+ },
2290
+ {
2291
+ "epoch": 1.63,
2292
+ "learning_rate": 9.123328900088058e-06,
2293
+ "loss": 0.3628,
2294
+ "step": 381
2295
+ },
2296
+ {
2297
+ "epoch": 1.63,
2298
+ "learning_rate": 9.07731640536698e-06,
2299
+ "loss": 0.3276,
2300
+ "step": 382
2301
+ },
2302
+ {
2303
+ "epoch": 1.64,
2304
+ "learning_rate": 9.031323604646488e-06,
2305
+ "loss": 0.3691,
2306
+ "step": 383
2307
+ },
2308
+ {
2309
+ "epoch": 1.64,
2310
+ "learning_rate": 8.985351479608972e-06,
2311
+ "loss": 0.3485,
2312
+ "step": 384
2313
+ },
2314
+ {
2315
+ "epoch": 1.64,
2316
+ "learning_rate": 8.939401011495527e-06,
2317
+ "loss": 0.3739,
2318
+ "step": 385
2319
+ },
2320
+ {
2321
+ "epoch": 1.65,
2322
+ "learning_rate": 8.893473181084993e-06,
2323
+ "loss": 0.339,
2324
+ "step": 386
2325
+ },
2326
+ {
2327
+ "epoch": 1.65,
2328
+ "learning_rate": 8.847568968673025e-06,
2329
+ "loss": 0.3763,
2330
+ "step": 387
2331
+ },
2332
+ {
2333
+ "epoch": 1.66,
2334
+ "learning_rate": 8.80168935405117e-06,
2335
+ "loss": 0.3365,
2336
+ "step": 388
2337
+ },
2338
+ {
2339
+ "epoch": 1.66,
2340
+ "learning_rate": 8.75583531648595e-06,
2341
+ "loss": 0.3568,
2342
+ "step": 389
2343
+ },
2344
+ {
2345
+ "epoch": 1.67,
2346
+ "learning_rate": 8.71000783469797e-06,
2347
+ "loss": 0.3614,
2348
+ "step": 390
2349
+ },
2350
+ {
2351
+ "epoch": 1.67,
2352
+ "learning_rate": 8.664207886841014e-06,
2353
+ "loss": 0.3539,
2354
+ "step": 391
2355
+ },
2356
+ {
2357
+ "epoch": 1.67,
2358
+ "learning_rate": 8.618436450481182e-06,
2359
+ "loss": 0.3189,
2360
+ "step": 392
2361
+ },
2362
+ {
2363
+ "epoch": 1.68,
2364
+ "learning_rate": 8.572694502576009e-06,
2365
+ "loss": 0.3642,
2366
+ "step": 393
2367
+ },
2368
+ {
2369
+ "epoch": 1.68,
2370
+ "learning_rate": 8.526983019453624e-06,
2371
+ "loss": 0.3292,
2372
+ "step": 394
2373
+ },
2374
+ {
2375
+ "epoch": 1.69,
2376
+ "learning_rate": 8.481302976791917e-06,
2377
+ "loss": 0.3552,
2378
+ "step": 395
2379
+ },
2380
+ {
2381
+ "epoch": 1.69,
2382
+ "learning_rate": 8.43565534959769e-06,
2383
+ "loss": 0.354,
2384
+ "step": 396
2385
+ },
2386
+ {
2387
+ "epoch": 1.7,
2388
+ "learning_rate": 8.39004111218587e-06,
2389
+ "loss": 0.3485,
2390
+ "step": 397
2391
+ },
2392
+ {
2393
+ "epoch": 1.7,
2394
+ "learning_rate": 8.3444612381587e-06,
2395
+ "loss": 0.3481,
2396
+ "step": 398
2397
+ },
2398
+ {
2399
+ "epoch": 1.7,
2400
+ "learning_rate": 8.29891670038496e-06,
2401
+ "loss": 0.3537,
2402
+ "step": 399
2403
+ },
2404
+ {
2405
+ "epoch": 1.71,
2406
+ "learning_rate": 8.253408470979212e-06,
2407
+ "loss": 0.367,
2408
+ "step": 400
2409
+ },
2410
+ {
2411
+ "epoch": 1.71,
2412
+ "learning_rate": 8.207937521281033e-06,
2413
+ "loss": 0.3631,
2414
+ "step": 401
2415
+ },
2416
+ {
2417
+ "epoch": 1.72,
2418
+ "learning_rate": 8.162504821834296e-06,
2419
+ "loss": 0.3509,
2420
+ "step": 402
2421
+ },
2422
+ {
2423
+ "epoch": 1.72,
2424
+ "learning_rate": 8.117111342366454e-06,
2425
+ "loss": 0.3435,
2426
+ "step": 403
2427
+ },
2428
+ {
2429
+ "epoch": 1.73,
2430
+ "learning_rate": 8.071758051767833e-06,
2431
+ "loss": 0.3386,
2432
+ "step": 404
2433
+ },
2434
+ {
2435
+ "epoch": 1.73,
2436
+ "learning_rate": 8.026445918070963e-06,
2437
+ "loss": 0.3549,
2438
+ "step": 405
2439
+ },
2440
+ {
2441
+ "epoch": 1.73,
2442
+ "learning_rate": 7.9811759084299e-06,
2443
+ "loss": 0.3458,
2444
+ "step": 406
2445
+ },
2446
+ {
2447
+ "epoch": 1.74,
2448
+ "learning_rate": 7.935948989099606e-06,
2449
+ "loss": 0.3439,
2450
+ "step": 407
2451
+ },
2452
+ {
2453
+ "epoch": 1.74,
2454
+ "learning_rate": 7.890766125415304e-06,
2455
+ "loss": 0.3684,
2456
+ "step": 408
2457
+ },
2458
+ {
2459
+ "epoch": 1.75,
2460
+ "learning_rate": 7.845628281771884e-06,
2461
+ "loss": 0.3487,
2462
+ "step": 409
2463
+ },
2464
+ {
2465
+ "epoch": 1.75,
2466
+ "learning_rate": 7.800536421603317e-06,
2467
+ "loss": 0.3532,
2468
+ "step": 410
2469
+ },
2470
+ {
2471
+ "epoch": 1.76,
2472
+ "learning_rate": 7.755491507362089e-06,
2473
+ "loss": 0.3537,
2474
+ "step": 411
2475
+ },
2476
+ {
2477
+ "epoch": 1.76,
2478
+ "learning_rate": 7.710494500498662e-06,
2479
+ "loss": 0.3464,
2480
+ "step": 412
2481
+ },
2482
+ {
2483
+ "epoch": 1.76,
2484
+ "learning_rate": 7.66554636144095e-06,
2485
+ "loss": 0.3602,
2486
+ "step": 413
2487
+ },
2488
+ {
2489
+ "epoch": 1.77,
2490
+ "learning_rate": 7.620648049573815e-06,
2491
+ "loss": 0.3486,
2492
+ "step": 414
2493
+ },
2494
+ {
2495
+ "epoch": 1.77,
2496
+ "learning_rate": 7.575800523218603e-06,
2497
+ "loss": 0.3649,
2498
+ "step": 415
2499
+ },
2500
+ {
2501
+ "epoch": 1.78,
2502
+ "learning_rate": 7.531004739612668e-06,
2503
+ "loss": 0.3409,
2504
+ "step": 416
2505
+ },
2506
+ {
2507
+ "epoch": 1.78,
2508
+ "learning_rate": 7.486261654888974e-06,
2509
+ "loss": 0.3496,
2510
+ "step": 417
2511
+ },
2512
+ {
2513
+ "epoch": 1.79,
2514
+ "learning_rate": 7.441572224055644e-06,
2515
+ "loss": 0.3395,
2516
+ "step": 418
2517
+ },
2518
+ {
2519
+ "epoch": 1.79,
2520
+ "learning_rate": 7.3969374009756104e-06,
2521
+ "loss": 0.3616,
2522
+ "step": 419
2523
+ },
2524
+ {
2525
+ "epoch": 1.79,
2526
+ "learning_rate": 7.352358138346241e-06,
2527
+ "loss": 0.3552,
2528
+ "step": 420
2529
+ },
2530
+ {
2531
+ "epoch": 1.8,
2532
+ "learning_rate": 7.307835387679007e-06,
2533
+ "loss": 0.3411,
2534
+ "step": 421
2535
+ },
2536
+ {
2537
+ "epoch": 1.8,
2538
+ "learning_rate": 7.263370099279173e-06,
2539
+ "loss": 0.3336,
2540
+ "step": 422
2541
+ },
2542
+ {
2543
+ "epoch": 1.81,
2544
+ "learning_rate": 7.21896322222551e-06,
2545
+ "loss": 0.3432,
2546
+ "step": 423
2547
+ },
2548
+ {
2549
+ "epoch": 1.81,
2550
+ "learning_rate": 7.17461570435005e-06,
2551
+ "loss": 0.3344,
2552
+ "step": 424
2553
+ },
2554
+ {
2555
+ "epoch": 1.81,
2556
+ "learning_rate": 7.130328492217841e-06,
2557
+ "loss": 0.3561,
2558
+ "step": 425
2559
+ },
2560
+ {
2561
+ "epoch": 1.82,
2562
+ "learning_rate": 7.086102531106755e-06,
2563
+ "loss": 0.3435,
2564
+ "step": 426
2565
+ },
2566
+ {
2567
+ "epoch": 1.82,
2568
+ "learning_rate": 7.041938764987297e-06,
2569
+ "loss": 0.3663,
2570
+ "step": 427
2571
+ },
2572
+ {
2573
+ "epoch": 1.83,
2574
+ "learning_rate": 6.997838136502474e-06,
2575
+ "loss": 0.3519,
2576
+ "step": 428
2577
+ },
2578
+ {
2579
+ "epoch": 1.83,
2580
+ "learning_rate": 6.953801586947664e-06,
2581
+ "loss": 0.347,
2582
+ "step": 429
2583
+ },
2584
+ {
2585
+ "epoch": 1.84,
2586
+ "learning_rate": 6.909830056250527e-06,
2587
+ "loss": 0.3435,
2588
+ "step": 430
2589
+ },
2590
+ {
2591
+ "epoch": 1.84,
2592
+ "learning_rate": 6.8659244829509455e-06,
2593
+ "loss": 0.3568,
2594
+ "step": 431
2595
+ },
2596
+ {
2597
+ "epoch": 1.84,
2598
+ "learning_rate": 6.822085804180985e-06,
2599
+ "loss": 0.3534,
2600
+ "step": 432
2601
+ },
2602
+ {
2603
+ "epoch": 1.85,
2604
+ "learning_rate": 6.778314955644905e-06,
2605
+ "loss": 0.3466,
2606
+ "step": 433
2607
+ },
2608
+ {
2609
+ "epoch": 1.85,
2610
+ "learning_rate": 6.734612871599169e-06,
2611
+ "loss": 0.359,
2612
+ "step": 434
2613
+ },
2614
+ {
2615
+ "epoch": 1.86,
2616
+ "learning_rate": 6.690980484832521e-06,
2617
+ "loss": 0.3444,
2618
+ "step": 435
2619
+ },
2620
+ {
2621
+ "epoch": 1.86,
2622
+ "learning_rate": 6.647418726646065e-06,
2623
+ "loss": 0.3309,
2624
+ "step": 436
2625
+ },
2626
+ {
2627
+ "epoch": 1.87,
2628
+ "learning_rate": 6.603928526833386e-06,
2629
+ "loss": 0.3378,
2630
+ "step": 437
2631
+ },
2632
+ {
2633
+ "epoch": 1.87,
2634
+ "learning_rate": 6.560510813660719e-06,
2635
+ "loss": 0.3541,
2636
+ "step": 438
2637
+ },
2638
+ {
2639
+ "epoch": 1.87,
2640
+ "learning_rate": 6.517166513847115e-06,
2641
+ "loss": 0.3587,
2642
+ "step": 439
2643
+ },
2644
+ {
2645
+ "epoch": 1.88,
2646
+ "learning_rate": 6.473896552544674e-06,
2647
+ "loss": 0.355,
2648
+ "step": 440
2649
+ },
2650
+ {
2651
+ "epoch": 1.88,
2652
+ "learning_rate": 6.430701853318797e-06,
2653
+ "loss": 0.3389,
2654
+ "step": 441
2655
+ },
2656
+ {
2657
+ "epoch": 1.89,
2658
+ "learning_rate": 6.387583338128471e-06,
2659
+ "loss": 0.3499,
2660
+ "step": 442
2661
+ },
2662
+ {
2663
+ "epoch": 1.89,
2664
+ "learning_rate": 6.344541927306589e-06,
2665
+ "loss": 0.3357,
2666
+ "step": 443
2667
+ },
2668
+ {
2669
+ "epoch": 1.9,
2670
+ "learning_rate": 6.30157853954031e-06,
2671
+ "loss": 0.3303,
2672
+ "step": 444
2673
+ },
2674
+ {
2675
+ "epoch": 1.9,
2676
+ "learning_rate": 6.2586940918514474e-06,
2677
+ "loss": 0.3424,
2678
+ "step": 445
2679
+ },
2680
+ {
2681
+ "epoch": 1.9,
2682
+ "learning_rate": 6.215889499576898e-06,
2683
+ "loss": 0.3757,
2684
+ "step": 446
2685
+ },
2686
+ {
2687
+ "epoch": 1.91,
2688
+ "learning_rate": 6.173165676349103e-06,
2689
+ "loss": 0.3483,
2690
+ "step": 447
2691
+ },
2692
+ {
2693
+ "epoch": 1.91,
2694
+ "learning_rate": 6.130523534076549e-06,
2695
+ "loss": 0.3567,
2696
+ "step": 448
2697
+ },
2698
+ {
2699
+ "epoch": 1.92,
2700
+ "learning_rate": 6.0879639829243e-06,
2701
+ "loss": 0.3538,
2702
+ "step": 449
2703
+ },
2704
+ {
2705
+ "epoch": 1.92,
2706
+ "learning_rate": 6.0454879312945755e-06,
2707
+ "loss": 0.3593,
2708
+ "step": 450
2709
+ },
2710
+ {
2711
+ "epoch": 1.93,
2712
+ "learning_rate": 6.0030962858073615e-06,
2713
+ "loss": 0.3575,
2714
+ "step": 451
2715
+ },
2716
+ {
2717
+ "epoch": 1.93,
2718
+ "learning_rate": 5.960789951281052e-06,
2719
+ "loss": 0.3382,
2720
+ "step": 452
2721
+ },
2722
+ {
2723
+ "epoch": 1.93,
2724
+ "learning_rate": 5.918569830713145e-06,
2725
+ "loss": 0.3507,
2726
+ "step": 453
2727
+ },
2728
+ {
2729
+ "epoch": 1.94,
2730
+ "learning_rate": 5.876436825260967e-06,
2731
+ "loss": 0.3509,
2732
+ "step": 454
2733
+ },
2734
+ {
2735
+ "epoch": 1.94,
2736
+ "learning_rate": 5.83439183422243e-06,
2737
+ "loss": 0.3473,
2738
+ "step": 455
2739
+ },
2740
+ {
2741
+ "epoch": 1.95,
2742
+ "learning_rate": 5.7924357550168534e-06,
2743
+ "loss": 0.3748,
2744
+ "step": 456
2745
+ },
2746
+ {
2747
+ "epoch": 1.95,
2748
+ "learning_rate": 5.750569483165785e-06,
2749
+ "loss": 0.3469,
2750
+ "step": 457
2751
+ },
2752
+ {
2753
+ "epoch": 1.96,
2754
+ "learning_rate": 5.708793912273911e-06,
2755
+ "loss": 0.3553,
2756
+ "step": 458
2757
+ },
2758
+ {
2759
+ "epoch": 1.96,
2760
+ "learning_rate": 5.667109934009973e-06,
2761
+ "loss": 0.3553,
2762
+ "step": 459
2763
+ },
2764
+ {
2765
+ "epoch": 1.96,
2766
+ "learning_rate": 5.625518438087738e-06,
2767
+ "loss": 0.357,
2768
+ "step": 460
2769
+ },
2770
+ {
2771
+ "epoch": 1.97,
2772
+ "learning_rate": 5.584020312246991e-06,
2773
+ "loss": 0.329,
2774
+ "step": 461
2775
+ },
2776
+ {
2777
+ "epoch": 1.97,
2778
+ "learning_rate": 5.542616442234618e-06,
2779
+ "loss": 0.3475,
2780
+ "step": 462
2781
+ },
2782
+ {
2783
+ "epoch": 1.98,
2784
+ "learning_rate": 5.501307711785672e-06,
2785
+ "loss": 0.3294,
2786
+ "step": 463
2787
+ },
2788
+ {
2789
+ "epoch": 1.98,
2790
+ "learning_rate": 5.460095002604533e-06,
2791
+ "loss": 0.3466,
2792
+ "step": 464
2793
+ },
2794
+ {
2795
+ "epoch": 1.99,
2796
+ "learning_rate": 5.418979194346065e-06,
2797
+ "loss": 0.3526,
2798
+ "step": 465
2799
+ },
2800
+ {
2801
+ "epoch": 1.99,
2802
+ "learning_rate": 5.3779611645968696e-06,
2803
+ "loss": 0.3429,
2804
+ "step": 466
2805
+ },
2806
+ {
2807
+ "epoch": 1.99,
2808
+ "learning_rate": 5.337041788856518e-06,
2809
+ "loss": 0.3307,
2810
+ "step": 467
2811
+ },
2812
+ {
2813
+ "epoch": 2.0,
2814
+ "learning_rate": 5.296221940518908e-06,
2815
+ "loss": 0.3755,
2816
+ "step": 468
2817
+ },
2818
+ {
2819
+ "epoch": 2.0,
2820
+ "learning_rate": 5.255502490853575e-06,
2821
+ "loss": 0.347,
2822
+ "step": 469
2823
+ },
2824
+ {
2825
+ "epoch": 2.01,
2826
+ "learning_rate": 5.214884308987136e-06,
2827
+ "loss": 0.2027,
2828
+ "step": 470
2829
+ },
2830
+ {
2831
+ "epoch": 2.01,
2832
+ "learning_rate": 5.1743682618847114e-06,
2833
+ "loss": 0.2009,
2834
+ "step": 471
2835
+ },
2836
+ {
2837
+ "epoch": 2.02,
2838
+ "learning_rate": 5.133955214331439e-06,
2839
+ "loss": 0.1942,
2840
+ "step": 472
2841
+ },
2842
+ {
2843
+ "epoch": 2.02,
2844
+ "learning_rate": 5.093646028913996e-06,
2845
+ "loss": 0.1812,
2846
+ "step": 473
2847
+ },
2848
+ {
2849
+ "epoch": 2.03,
2850
+ "learning_rate": 5.053441566002214e-06,
2851
+ "loss": 0.1953,
2852
+ "step": 474
2853
+ },
2854
+ {
2855
+ "epoch": 2.03,
2856
+ "learning_rate": 5.013342683730682e-06,
2857
+ "loss": 0.1985,
2858
+ "step": 475
2859
+ },
2860
+ {
2861
+ "epoch": 2.03,
2862
+ "learning_rate": 4.973350237980466e-06,
2863
+ "loss": 0.185,
2864
+ "step": 476
2865
+ },
2866
+ {
2867
+ "epoch": 2.04,
2868
+ "learning_rate": 4.933465082360808e-06,
2869
+ "loss": 0.1864,
2870
+ "step": 477
2871
+ },
2872
+ {
2873
+ "epoch": 2.04,
2874
+ "learning_rate": 4.893688068190933e-06,
2875
+ "loss": 0.1846,
2876
+ "step": 478
2877
+ },
2878
+ {
2879
+ "epoch": 2.05,
2880
+ "learning_rate": 4.854020044481855e-06,
2881
+ "loss": 0.1827,
2882
+ "step": 479
2883
+ },
2884
+ {
2885
+ "epoch": 2.05,
2886
+ "learning_rate": 4.814461857918279e-06,
2887
+ "loss": 0.2007,
2888
+ "step": 480
2889
+ },
2890
+ {
2891
+ "epoch": 2.06,
2892
+ "learning_rate": 4.775014352840512e-06,
2893
+ "loss": 0.1921,
2894
+ "step": 481
2895
+ },
2896
+ {
2897
+ "epoch": 2.06,
2898
+ "learning_rate": 4.7356783712264405e-06,
2899
+ "loss": 0.1749,
2900
+ "step": 482
2901
+ },
2902
+ {
2903
+ "epoch": 2.06,
2904
+ "learning_rate": 4.696454752673578e-06,
2905
+ "loss": 0.182,
2906
+ "step": 483
2907
+ },
2908
+ {
2909
+ "epoch": 2.07,
2910
+ "learning_rate": 4.657344334381116e-06,
2911
+ "loss": 0.1766,
2912
+ "step": 484
2913
+ },
2914
+ {
2915
+ "epoch": 2.07,
2916
+ "learning_rate": 4.618347951132085e-06,
2917
+ "loss": 0.1804,
2918
+ "step": 485
2919
+ },
2920
+ {
2921
+ "epoch": 2.08,
2922
+ "learning_rate": 4.579466435275506e-06,
2923
+ "loss": 0.1736,
2924
+ "step": 486
2925
+ },
2926
+ {
2927
+ "epoch": 2.08,
2928
+ "learning_rate": 4.5407006167086575e-06,
2929
+ "loss": 0.1736,
2930
+ "step": 487
2931
+ },
2932
+ {
2933
+ "epoch": 2.09,
2934
+ "learning_rate": 4.5020513228593275e-06,
2935
+ "loss": 0.1801,
2936
+ "step": 488
2937
+ },
2938
+ {
2939
+ "epoch": 2.09,
2940
+ "learning_rate": 4.463519378668185e-06,
2941
+ "loss": 0.1644,
2942
+ "step": 489
2943
+ },
2944
+ {
2945
+ "epoch": 2.09,
2946
+ "learning_rate": 4.425105606571145e-06,
2947
+ "loss": 0.2001,
2948
+ "step": 490
2949
+ },
2950
+ {
2951
+ "epoch": 2.1,
2952
+ "learning_rate": 4.3868108264818366e-06,
2953
+ "loss": 0.1953,
2954
+ "step": 491
2955
+ },
2956
+ {
2957
+ "epoch": 2.1,
2958
+ "learning_rate": 4.348635855774082e-06,
2959
+ "loss": 0.1765,
2960
+ "step": 492
2961
+ },
2962
+ {
2963
+ "epoch": 2.11,
2964
+ "learning_rate": 4.310581509264471e-06,
2965
+ "loss": 0.1856,
2966
+ "step": 493
2967
+ },
2968
+ {
2969
+ "epoch": 2.11,
2970
+ "learning_rate": 4.272648599194948e-06,
2971
+ "loss": 0.1897,
2972
+ "step": 494
2973
+ },
2974
+ {
2975
+ "epoch": 2.12,
2976
+ "learning_rate": 4.2348379352155e-06,
2977
+ "loss": 0.1889,
2978
+ "step": 495
2979
+ },
2980
+ {
2981
+ "epoch": 2.12,
2982
+ "learning_rate": 4.197150324366844e-06,
2983
+ "loss": 0.1848,
2984
+ "step": 496
2985
+ },
2986
+ {
2987
+ "epoch": 2.12,
2988
+ "learning_rate": 4.1595865710632366e-06,
2989
+ "loss": 0.1862,
2990
+ "step": 497
2991
+ },
2992
+ {
2993
+ "epoch": 2.13,
2994
+ "learning_rate": 4.12214747707527e-06,
2995
+ "loss": 0.1758,
2996
+ "step": 498
2997
+ },
2998
+ {
2999
+ "epoch": 2.13,
3000
+ "learning_rate": 4.084833841512791e-06,
3001
+ "loss": 0.1712,
3002
+ "step": 499
3003
+ },
3004
+ {
3005
+ "epoch": 2.14,
3006
+ "learning_rate": 4.047646460807814e-06,
3007
+ "loss": 0.1835,
3008
+ "step": 500
3009
+ },
3010
+ {
3011
+ "epoch": 2.14,
3012
+ "learning_rate": 4.010586128697546e-06,
3013
+ "loss": 0.1885,
3014
+ "step": 501
3015
+ },
3016
+ {
3017
+ "epoch": 2.15,
3018
+ "learning_rate": 3.973653636207437e-06,
3019
+ "loss": 0.1867,
3020
+ "step": 502
3021
+ },
3022
+ {
3023
+ "epoch": 2.15,
3024
+ "learning_rate": 3.936849771634286e-06,
3025
+ "loss": 0.1883,
3026
+ "step": 503
3027
+ },
3028
+ {
3029
+ "epoch": 2.15,
3030
+ "learning_rate": 3.9001753205294335e-06,
3031
+ "loss": 0.1921,
3032
+ "step": 504
3033
+ },
3034
+ {
3035
+ "epoch": 2.16,
3036
+ "learning_rate": 3.863631065681974e-06,
3037
+ "loss": 0.1733,
3038
+ "step": 505
3039
+ },
3040
+ {
3041
+ "epoch": 2.16,
3042
+ "learning_rate": 3.827217787102072e-06,
3043
+ "loss": 0.1736,
3044
+ "step": 506
3045
+ },
3046
+ {
3047
+ "epoch": 2.17,
3048
+ "learning_rate": 3.790936262004287e-06,
3049
+ "loss": 0.1792,
3050
+ "step": 507
3051
+ },
3052
+ {
3053
+ "epoch": 2.17,
3054
+ "learning_rate": 3.754787264791011e-06,
3055
+ "loss": 0.176,
3056
+ "step": 508
3057
+ },
3058
+ {
3059
+ "epoch": 2.17,
3060
+ "learning_rate": 3.7187715670359114e-06,
3061
+ "loss": 0.1631,
3062
+ "step": 509
3063
+ },
3064
+ {
3065
+ "epoch": 2.18,
3066
+ "learning_rate": 3.6828899374674933e-06,
3067
+ "loss": 0.1825,
3068
+ "step": 510
3069
+ },
3070
+ {
3071
+ "epoch": 2.18,
3072
+ "learning_rate": 3.647143141952657e-06,
3073
+ "loss": 0.1951,
3074
+ "step": 511
3075
+ },
3076
+ {
3077
+ "epoch": 2.19,
3078
+ "learning_rate": 3.6115319434803897e-06,
3079
+ "loss": 0.1708,
3080
+ "step": 512
3081
+ },
3082
+ {
3083
+ "epoch": 2.19,
3084
+ "learning_rate": 3.5760571021454393e-06,
3085
+ "loss": 0.185,
3086
+ "step": 513
3087
+ },
3088
+ {
3089
+ "epoch": 2.2,
3090
+ "learning_rate": 3.540719375132129e-06,
3091
+ "loss": 0.1723,
3092
+ "step": 514
3093
+ },
3094
+ {
3095
+ "epoch": 2.2,
3096
+ "learning_rate": 3.505519516698165e-06,
3097
+ "loss": 0.1806,
3098
+ "step": 515
3099
+ },
3100
+ {
3101
+ "epoch": 2.2,
3102
+ "learning_rate": 3.4704582781585596e-06,
3103
+ "loss": 0.1641,
3104
+ "step": 516
3105
+ },
3106
+ {
3107
+ "epoch": 2.21,
3108
+ "learning_rate": 3.435536407869575e-06,
3109
+ "loss": 0.1694,
3110
+ "step": 517
3111
+ },
3112
+ {
3113
+ "epoch": 2.21,
3114
+ "learning_rate": 3.4007546512127764e-06,
3115
+ "loss": 0.1794,
3116
+ "step": 518
3117
+ },
3118
+ {
3119
+ "epoch": 2.22,
3120
+ "learning_rate": 3.366113750579091e-06,
3121
+ "loss": 0.1814,
3122
+ "step": 519
3123
+ },
3124
+ {
3125
+ "epoch": 2.22,
3126
+ "learning_rate": 3.3316144453529897e-06,
3127
+ "loss": 0.1702,
3128
+ "step": 520
3129
+ },
3130
+ {
3131
+ "epoch": 2.23,
3132
+ "learning_rate": 3.2972574718966845e-06,
3133
+ "loss": 0.1755,
3134
+ "step": 521
3135
+ },
3136
+ {
3137
+ "epoch": 2.23,
3138
+ "learning_rate": 3.2630435635344283e-06,
3139
+ "loss": 0.1818,
3140
+ "step": 522
3141
+ },
3142
+ {
3143
+ "epoch": 2.23,
3144
+ "learning_rate": 3.228973450536852e-06,
3145
+ "loss": 0.1848,
3146
+ "step": 523
3147
+ },
3148
+ {
3149
+ "epoch": 2.24,
3150
+ "learning_rate": 3.1950478601053847e-06,
3151
+ "loss": 0.1867,
3152
+ "step": 524
3153
+ },
3154
+ {
3155
+ "epoch": 2.24,
3156
+ "learning_rate": 3.1612675163567186e-06,
3157
+ "loss": 0.1659,
3158
+ "step": 525
3159
+ },
3160
+ {
3161
+ "epoch": 2.25,
3162
+ "learning_rate": 3.1276331403073733e-06,
3163
+ "loss": 0.1747,
3164
+ "step": 526
3165
+ },
3166
+ {
3167
+ "epoch": 2.25,
3168
+ "learning_rate": 3.0941454498582847e-06,
3169
+ "loss": 0.1749,
3170
+ "step": 527
3171
+ },
3172
+ {
3173
+ "epoch": 2.26,
3174
+ "learning_rate": 3.0608051597795043e-06,
3175
+ "loss": 0.1675,
3176
+ "step": 528
3177
+ },
3178
+ {
3179
+ "epoch": 2.26,
3180
+ "learning_rate": 3.0276129816949207e-06,
3181
+ "loss": 0.1857,
3182
+ "step": 529
3183
+ },
3184
+ {
3185
+ "epoch": 2.26,
3186
+ "learning_rate": 2.9945696240670905e-06,
3187
+ "loss": 0.1784,
3188
+ "step": 530
3189
+ },
3190
+ {
3191
+ "epoch": 2.27,
3192
+ "learning_rate": 2.9616757921821005e-06,
3193
+ "loss": 0.1873,
3194
+ "step": 531
3195
+ },
3196
+ {
3197
+ "epoch": 2.27,
3198
+ "learning_rate": 2.9289321881345257e-06,
3199
+ "loss": 0.1732,
3200
+ "step": 532
3201
+ },
3202
+ {
3203
+ "epoch": 2.28,
3204
+ "learning_rate": 2.896339510812436e-06,
3205
+ "loss": 0.1801,
3206
+ "step": 533
3207
+ },
3208
+ {
3209
+ "epoch": 2.28,
3210
+ "learning_rate": 2.8638984558824777e-06,
3211
+ "loss": 0.1822,
3212
+ "step": 534
3213
+ },
3214
+ {
3215
+ "epoch": 2.29,
3216
+ "learning_rate": 2.8316097157750422e-06,
3217
+ "loss": 0.1806,
3218
+ "step": 535
3219
+ },
3220
+ {
3221
+ "epoch": 2.29,
3222
+ "learning_rate": 2.799473979669456e-06,
3223
+ "loss": 0.18,
3224
+ "step": 536
3225
+ },
3226
+ {
3227
+ "epoch": 2.29,
3228
+ "learning_rate": 2.767491933479304e-06,
3229
+ "loss": 0.1652,
3230
+ "step": 537
3231
+ },
3232
+ {
3233
+ "epoch": 2.3,
3234
+ "learning_rate": 2.7356642598377604e-06,
3235
+ "loss": 0.1734,
3236
+ "step": 538
3237
+ },
3238
+ {
3239
+ "epoch": 2.3,
3240
+ "learning_rate": 2.703991638083042e-06,
3241
+ "loss": 0.1706,
3242
+ "step": 539
3243
+ },
3244
+ {
3245
+ "epoch": 2.31,
3246
+ "learning_rate": 2.672474744243888e-06,
3247
+ "loss": 0.1714,
3248
+ "step": 540
3249
+ },
3250
+ {
3251
+ "epoch": 2.31,
3252
+ "learning_rate": 2.64111425102515e-06,
3253
+ "loss": 0.1694,
3254
+ "step": 541
3255
+ },
3256
+ {
3257
+ "epoch": 2.32,
3258
+ "learning_rate": 2.6099108277934105e-06,
3259
+ "loss": 0.17,
3260
+ "step": 542
3261
+ },
3262
+ {
3263
+ "epoch": 2.32,
3264
+ "learning_rate": 2.578865140562722e-06,
3265
+ "loss": 0.1818,
3266
+ "step": 543
3267
+ },
3268
+ {
3269
+ "epoch": 2.32,
3270
+ "learning_rate": 2.547977851980373e-06,
3271
+ "loss": 0.1712,
3272
+ "step": 544
3273
+ },
3274
+ {
3275
+ "epoch": 2.33,
3276
+ "learning_rate": 2.517249621312752e-06,
3277
+ "loss": 0.1741,
3278
+ "step": 545
3279
+ },
3280
+ {
3281
+ "epoch": 2.33,
3282
+ "learning_rate": 2.4866811044312667e-06,
3283
+ "loss": 0.1727,
3284
+ "step": 546
3285
+ },
3286
+ {
3287
+ "epoch": 2.34,
3288
+ "learning_rate": 2.456272953798361e-06,
3289
+ "loss": 0.1823,
3290
+ "step": 547
3291
+ },
3292
+ {
3293
+ "epoch": 2.34,
3294
+ "learning_rate": 2.426025818453572e-06,
3295
+ "loss": 0.1848,
3296
+ "step": 548
3297
+ },
3298
+ {
3299
+ "epoch": 2.35,
3300
+ "learning_rate": 2.395940343999691e-06,
3301
+ "loss": 0.1753,
3302
+ "step": 549
3303
+ },
3304
+ {
3305
+ "epoch": 2.35,
3306
+ "learning_rate": 2.3660171725889703e-06,
3307
+ "loss": 0.1766,
3308
+ "step": 550
3309
+ },
3310
+ {
3311
+ "epoch": 2.35,
3312
+ "learning_rate": 2.3362569429094295e-06,
3313
+ "loss": 0.1695,
3314
+ "step": 551
3315
+ },
3316
+ {
3317
+ "epoch": 2.36,
3318
+ "learning_rate": 2.306660290171211e-06,
3319
+ "loss": 0.1739,
3320
+ "step": 552
3321
+ },
3322
+ {
3323
+ "epoch": 2.36,
3324
+ "learning_rate": 2.277227846093035e-06,
3325
+ "loss": 0.1792,
3326
+ "step": 553
3327
+ },
3328
+ {
3329
+ "epoch": 2.37,
3330
+ "learning_rate": 2.2479602388887013e-06,
3331
+ "loss": 0.1763,
3332
+ "step": 554
3333
+ },
3334
+ {
3335
+ "epoch": 2.37,
3336
+ "learning_rate": 2.2188580932536986e-06,
3337
+ "loss": 0.1742,
3338
+ "step": 555
3339
+ },
3340
+ {
3341
+ "epoch": 2.38,
3342
+ "learning_rate": 2.1899220303518465e-06,
3343
+ "loss": 0.1829,
3344
+ "step": 556
3345
+ },
3346
+ {
3347
+ "epoch": 2.38,
3348
+ "learning_rate": 2.1611526678020658e-06,
3349
+ "loss": 0.1695,
3350
+ "step": 557
3351
+ },
3352
+ {
3353
+ "epoch": 2.38,
3354
+ "learning_rate": 2.132550619665168e-06,
3355
+ "loss": 0.1774,
3356
+ "step": 558
3357
+ },
3358
+ {
3359
+ "epoch": 2.39,
3360
+ "learning_rate": 2.1041164964307747e-06,
3361
+ "loss": 0.1811,
3362
+ "step": 559
3363
+ },
3364
+ {
3365
+ "epoch": 2.39,
3366
+ "learning_rate": 2.075850905004262e-06,
3367
+ "loss": 0.1923,
3368
+ "step": 560
3369
+ },
3370
+ {
3371
+ "epoch": 2.4,
3372
+ "learning_rate": 2.0477544486938306e-06,
3373
+ "loss": 0.18,
3374
+ "step": 561
3375
+ },
3376
+ {
3377
+ "epoch": 2.4,
3378
+ "learning_rate": 2.019827727197605e-06,
3379
+ "loss": 0.1724,
3380
+ "step": 562
3381
+ },
3382
+ {
3383
+ "epoch": 2.41,
3384
+ "learning_rate": 1.9920713365908586e-06,
3385
+ "loss": 0.1746,
3386
+ "step": 563
3387
+ },
3388
+ {
3389
+ "epoch": 2.41,
3390
+ "learning_rate": 1.9644858693132627e-06,
3391
+ "loss": 0.1772,
3392
+ "step": 564
3393
+ },
3394
+ {
3395
+ "epoch": 2.41,
3396
+ "learning_rate": 1.9370719141562687e-06,
3397
+ "loss": 0.1735,
3398
+ "step": 565
3399
+ },
3400
+ {
3401
+ "epoch": 2.42,
3402
+ "learning_rate": 1.9098300562505266e-06,
3403
+ "loss": 0.1741,
3404
+ "step": 566
3405
+ },
3406
+ {
3407
+ "epoch": 2.42,
3408
+ "learning_rate": 1.882760877053388e-06,
3409
+ "loss": 0.1779,
3410
+ "step": 567
3411
+ },
3412
+ {
3413
+ "epoch": 2.43,
3414
+ "learning_rate": 1.855864954336517e-06,
3415
+ "loss": 0.1747,
3416
+ "step": 568
3417
+ },
3418
+ {
3419
+ "epoch": 2.43,
3420
+ "learning_rate": 1.8291428621735353e-06,
3421
+ "loss": 0.1828,
3422
+ "step": 569
3423
+ },
3424
+ {
3425
+ "epoch": 2.44,
3426
+ "learning_rate": 1.80259517092779e-06,
3427
+ "loss": 0.1681,
3428
+ "step": 570
3429
+ },
3430
+ {
3431
+ "epoch": 2.44,
3432
+ "learning_rate": 1.776222447240159e-06,
3433
+ "loss": 0.1728,
3434
+ "step": 571
3435
+ },
3436
+ {
3437
+ "epoch": 2.44,
3438
+ "learning_rate": 1.7500252540169782e-06,
3439
+ "loss": 0.1818,
3440
+ "step": 572
3441
+ },
3442
+ {
3443
+ "epoch": 2.45,
3444
+ "learning_rate": 1.7240041504180016e-06,
3445
+ "loss": 0.1682,
3446
+ "step": 573
3447
+ },
3448
+ {
3449
+ "epoch": 2.45,
3450
+ "learning_rate": 1.6981596918444953e-06,
3451
+ "loss": 0.1787,
3452
+ "step": 574
3453
+ },
3454
+ {
3455
+ "epoch": 2.46,
3456
+ "learning_rate": 1.6724924299273514e-06,
3457
+ "loss": 0.1656,
3458
+ "step": 575
3459
+ },
3460
+ {
3461
+ "epoch": 2.46,
3462
+ "learning_rate": 1.6470029125153463e-06,
3463
+ "loss": 0.1827,
3464
+ "step": 576
3465
+ },
3466
+ {
3467
+ "epoch": 2.47,
3468
+ "learning_rate": 1.6216916836634179e-06,
3469
+ "loss": 0.1862,
3470
+ "step": 577
3471
+ },
3472
+ {
3473
+ "epoch": 2.47,
3474
+ "learning_rate": 1.596559283621074e-06,
3475
+ "loss": 0.1778,
3476
+ "step": 578
3477
+ },
3478
+ {
3479
+ "epoch": 2.47,
3480
+ "learning_rate": 1.5716062488208494e-06,
3481
+ "loss": 0.1563,
3482
+ "step": 579
3483
+ },
3484
+ {
3485
+ "epoch": 2.48,
3486
+ "learning_rate": 1.5468331118668655e-06,
3487
+ "loss": 0.1839,
3488
+ "step": 580
3489
+ },
3490
+ {
3491
+ "epoch": 2.48,
3492
+ "learning_rate": 1.5222404015234483e-06,
3493
+ "loss": 0.1741,
3494
+ "step": 581
3495
+ },
3496
+ {
3497
+ "epoch": 2.49,
3498
+ "learning_rate": 1.4978286427038602e-06,
3499
+ "loss": 0.1768,
3500
+ "step": 582
3501
+ },
3502
+ {
3503
+ "epoch": 2.49,
3504
+ "learning_rate": 1.4735983564590784e-06,
3505
+ "loss": 0.1781,
3506
+ "step": 583
3507
+ },
3508
+ {
3509
+ "epoch": 2.49,
3510
+ "learning_rate": 1.44955005996669e-06,
3511
+ "loss": 0.1709,
3512
+ "step": 584
3513
+ },
3514
+ {
3515
+ "epoch": 2.5,
3516
+ "learning_rate": 1.4256842665198377e-06,
3517
+ "loss": 0.1702,
3518
+ "step": 585
3519
+ },
3520
+ {
3521
+ "epoch": 2.5,
3522
+ "learning_rate": 1.4020014855162755e-06,
3523
+ "loss": 0.1808,
3524
+ "step": 586
3525
+ },
3526
+ {
3527
+ "epoch": 2.51,
3528
+ "learning_rate": 1.3785022224474943e-06,
3529
+ "loss": 0.1762,
3530
+ "step": 587
3531
+ },
3532
+ {
3533
+ "epoch": 2.51,
3534
+ "learning_rate": 1.3551869788879213e-06,
3535
+ "loss": 0.1718,
3536
+ "step": 588
3537
+ },
3538
+ {
3539
+ "epoch": 2.52,
3540
+ "learning_rate": 1.332056252484234e-06,
3541
+ "loss": 0.1884,
3542
+ "step": 589
3543
+ },
3544
+ {
3545
+ "epoch": 2.52,
3546
+ "learning_rate": 1.3091105369447166e-06,
3547
+ "loss": 0.1712,
3548
+ "step": 590
3549
+ },
3550
+ {
3551
+ "epoch": 2.52,
3552
+ "learning_rate": 1.2863503220287433e-06,
3553
+ "loss": 0.1712,
3554
+ "step": 591
3555
+ },
3556
+ {
3557
+ "epoch": 2.53,
3558
+ "learning_rate": 1.2637760935363053e-06,
3559
+ "loss": 0.1883,
3560
+ "step": 592
3561
+ },
3562
+ {
3563
+ "epoch": 2.53,
3564
+ "learning_rate": 1.2413883332976573e-06,
3565
+ "loss": 0.1802,
3566
+ "step": 593
3567
+ },
3568
+ {
3569
+ "epoch": 2.54,
3570
+ "learning_rate": 1.2191875191630209e-06,
3571
+ "loss": 0.1671,
3572
+ "step": 594
3573
+ },
3574
+ {
3575
+ "epoch": 2.54,
3576
+ "learning_rate": 1.1971741249923985e-06,
3577
+ "loss": 0.1766,
3578
+ "step": 595
3579
+ },
3580
+ {
3581
+ "epoch": 2.55,
3582
+ "learning_rate": 1.1753486206454433e-06,
3583
+ "loss": 0.1657,
3584
+ "step": 596
3585
+ },
3586
+ {
3587
+ "epoch": 2.55,
3588
+ "learning_rate": 1.1537114719714482e-06,
3589
+ "loss": 0.1788,
3590
+ "step": 597
3591
+ },
3592
+ {
3593
+ "epoch": 2.55,
3594
+ "learning_rate": 1.132263140799381e-06,
3595
+ "loss": 0.1727,
3596
+ "step": 598
3597
+ },
3598
+ {
3599
+ "epoch": 2.56,
3600
+ "learning_rate": 1.1110040849280534e-06,
3601
+ "loss": 0.1774,
3602
+ "step": 599
3603
+ },
3604
+ {
3605
+ "epoch": 2.56,
3606
+ "learning_rate": 1.0899347581163222e-06,
3607
+ "loss": 0.1626,
3608
+ "step": 600
3609
+ },
3610
+ {
3611
+ "epoch": 2.57,
3612
+ "learning_rate": 1.0690556100734284e-06,
3613
+ "loss": 0.1768,
3614
+ "step": 601
3615
+ },
3616
+ {
3617
+ "epoch": 2.57,
3618
+ "learning_rate": 1.0483670864493777e-06,
3619
+ "loss": 0.1763,
3620
+ "step": 602
3621
+ },
3622
+ {
3623
+ "epoch": 2.58,
3624
+ "learning_rate": 1.0278696288254475e-06,
3625
+ "loss": 0.1754,
3626
+ "step": 603
3627
+ },
3628
+ {
3629
+ "epoch": 2.58,
3630
+ "learning_rate": 1.0075636747047446e-06,
3631
+ "loss": 0.178,
3632
+ "step": 604
3633
+ },
3634
+ {
3635
+ "epoch": 2.58,
3636
+ "learning_rate": 9.874496575028814e-07,
3637
+ "loss": 0.1722,
3638
+ "step": 605
3639
+ },
3640
+ {
3641
+ "epoch": 2.59,
3642
+ "learning_rate": 9.675280065387117e-07,
3643
+ "loss": 0.1924,
3644
+ "step": 606
3645
+ },
3646
+ {
3647
+ "epoch": 2.59,
3648
+ "learning_rate": 9.47799147025179e-07,
3649
+ "loss": 0.1771,
3650
+ "step": 607
3651
+ },
3652
+ {
3653
+ "epoch": 2.6,
3654
+ "learning_rate": 9.282635000602346e-07,
3655
+ "loss": 0.1757,
3656
+ "step": 608
3657
+ },
3658
+ {
3659
+ "epoch": 2.6,
3660
+ "learning_rate": 9.089214826178505e-07,
3661
+ "loss": 0.1818,
3662
+ "step": 609
3663
+ },
3664
+ {
3665
+ "epoch": 2.61,
3666
+ "learning_rate": 8.897735075391156e-07,
3667
+ "loss": 0.1675,
3668
+ "step": 610
3669
+ },
3670
+ {
3671
+ "epoch": 2.61,
3672
+ "learning_rate": 8.708199835234343e-07,
3673
+ "loss": 0.1944,
3674
+ "step": 611
3675
+ },
3676
+ {
3677
+ "epoch": 2.61,
3678
+ "learning_rate": 8.520613151197899e-07,
3679
+ "loss": 0.1732,
3680
+ "step": 612
3681
+ },
3682
+ {
3683
+ "epoch": 2.62,
3684
+ "learning_rate": 8.334979027181222e-07,
3685
+ "loss": 0.1851,
3686
+ "step": 613
3687
+ },
3688
+ {
3689
+ "epoch": 2.62,
3690
+ "learning_rate": 8.151301425407699e-07,
3691
+ "loss": 0.1887,
3692
+ "step": 614
3693
+ },
3694
+ {
3695
+ "epoch": 2.63,
3696
+ "learning_rate": 7.969584266340258e-07,
3697
+ "loss": 0.164,
3698
+ "step": 615
3699
+ },
3700
+ {
3701
+ "epoch": 2.63,
3702
+ "learning_rate": 7.78983142859755e-07,
3703
+ "loss": 0.1876,
3704
+ "step": 616
3705
+ },
3706
+ {
3707
+ "epoch": 2.64,
3708
+ "learning_rate": 7.612046748871327e-07,
3709
+ "loss": 0.1822,
3710
+ "step": 617
3711
+ },
3712
+ {
3713
+ "epoch": 2.64,
3714
+ "learning_rate": 7.43623402184438e-07,
3715
+ "loss": 0.1756,
3716
+ "step": 618
3717
+ },
3718
+ {
3719
+ "epoch": 2.64,
3720
+ "learning_rate": 7.262397000109645e-07,
3721
+ "loss": 0.184,
3722
+ "step": 619
3723
+ },
3724
+ {
3725
+ "epoch": 2.65,
3726
+ "learning_rate": 7.090539394090135e-07,
3727
+ "loss": 0.1827,
3728
+ "step": 620
3729
+ },
3730
+ {
3731
+ "epoch": 2.65,
3732
+ "learning_rate": 6.920664871959603e-07,
3733
+ "loss": 0.1669,
3734
+ "step": 621
3735
+ },
3736
+ {
3737
+ "epoch": 2.66,
3738
+ "learning_rate": 6.752777059564431e-07,
3739
+ "loss": 0.1723,
3740
+ "step": 622
3741
+ },
3742
+ {
3743
+ "epoch": 2.66,
3744
+ "learning_rate": 6.586879540346092e-07,
3745
+ "loss": 0.1719,
3746
+ "step": 623
3747
+ },
3748
+ {
3749
+ "epoch": 2.67,
3750
+ "learning_rate": 6.422975855264757e-07,
3751
+ "loss": 0.1745,
3752
+ "step": 624
3753
+ },
3754
+ {
3755
+ "epoch": 2.67,
3756
+ "learning_rate": 6.261069502723616e-07,
3757
+ "loss": 0.1715,
3758
+ "step": 625
3759
+ },
3760
+ {
3761
+ "epoch": 2.67,
3762
+ "learning_rate": 6.101163938494359e-07,
3763
+ "loss": 0.164,
3764
+ "step": 626
3765
+ },
3766
+ {
3767
+ "epoch": 2.68,
3768
+ "learning_rate": 5.943262575643239e-07,
3769
+ "loss": 0.1745,
3770
+ "step": 627
3771
+ },
3772
+ {
3773
+ "epoch": 2.68,
3774
+ "learning_rate": 5.78736878445837e-07,
3775
+ "loss": 0.1748,
3776
+ "step": 628
3777
+ },
3778
+ {
3779
+ "epoch": 2.69,
3780
+ "learning_rate": 5.633485892377699e-07,
3781
+ "loss": 0.189,
3782
+ "step": 629
3783
+ },
3784
+ {
3785
+ "epoch": 2.69,
3786
+ "learning_rate": 5.481617183918053e-07,
3787
+ "loss": 0.1607,
3788
+ "step": 630
3789
+ },
3790
+ {
3791
+ "epoch": 2.7,
3792
+ "learning_rate": 5.331765900604913e-07,
3793
+ "loss": 0.1747,
3794
+ "step": 631
3795
+ },
3796
+ {
3797
+ "epoch": 2.7,
3798
+ "learning_rate": 5.183935240903415e-07,
3799
+ "loss": 0.1778,
3800
+ "step": 632
3801
+ },
3802
+ {
3803
+ "epoch": 2.7,
3804
+ "learning_rate": 5.038128360149885e-07,
3805
+ "loss": 0.1619,
3806
+ "step": 633
3807
+ },
3808
+ {
3809
+ "epoch": 2.71,
3810
+ "learning_rate": 4.894348370484648e-07,
3811
+ "loss": 0.1868,
3812
+ "step": 634
3813
+ },
3814
+ {
3815
+ "epoch": 2.71,
3816
+ "learning_rate": 4.752598340785475e-07,
3817
+ "loss": 0.1749,
3818
+ "step": 635
3819
+ },
3820
+ {
3821
+ "epoch": 2.72,
3822
+ "learning_rate": 4.6128812966021894e-07,
3823
+ "loss": 0.1706,
3824
+ "step": 636
3825
+ },
3826
+ {
3827
+ "epoch": 2.72,
3828
+ "learning_rate": 4.475200220092002e-07,
3829
+ "loss": 0.1826,
3830
+ "step": 637
3831
+ },
3832
+ {
3833
+ "epoch": 2.73,
3834
+ "learning_rate": 4.3395580499559276e-07,
3835
+ "loss": 0.1838,
3836
+ "step": 638
3837
+ },
3838
+ {
3839
+ "epoch": 2.73,
3840
+ "learning_rate": 4.205957681375994e-07,
3841
+ "loss": 0.1779,
3842
+ "step": 639
3843
+ },
3844
+ {
3845
+ "epoch": 2.73,
3846
+ "learning_rate": 4.0744019659535116e-07,
3847
+ "loss": 0.1745,
3848
+ "step": 640
3849
+ },
3850
+ {
3851
+ "epoch": 2.74,
3852
+ "learning_rate": 3.9448937116481676e-07,
3853
+ "loss": 0.1818,
3854
+ "step": 641
3855
+ },
3856
+ {
3857
+ "epoch": 2.74,
3858
+ "learning_rate": 3.817435682718096e-07,
3859
+ "loss": 0.1755,
3860
+ "step": 642
3861
+ },
3862
+ {
3863
+ "epoch": 2.75,
3864
+ "learning_rate": 3.6920305996608785e-07,
3865
+ "loss": 0.184,
3866
+ "step": 643
3867
+ },
3868
+ {
3869
+ "epoch": 2.75,
3870
+ "learning_rate": 3.5686811391555164e-07,
3871
+ "loss": 0.1838,
3872
+ "step": 644
3873
+ },
3874
+ {
3875
+ "epoch": 2.76,
3876
+ "learning_rate": 3.4473899340052075e-07,
3877
+ "loss": 0.1831,
3878
+ "step": 645
3879
+ },
3880
+ {
3881
+ "epoch": 2.76,
3882
+ "learning_rate": 3.328159573081258e-07,
3883
+ "loss": 0.1767,
3884
+ "step": 646
3885
+ },
3886
+ {
3887
+ "epoch": 2.76,
3888
+ "learning_rate": 3.2109926012677484e-07,
3889
+ "loss": 0.1746,
3890
+ "step": 647
3891
+ },
3892
+ {
3893
+ "epoch": 2.77,
3894
+ "learning_rate": 3.095891519407246e-07,
3895
+ "loss": 0.1788,
3896
+ "step": 648
3897
+ },
3898
+ {
3899
+ "epoch": 2.77,
3900
+ "learning_rate": 2.982858784247422e-07,
3901
+ "loss": 0.1859,
3902
+ "step": 649
3903
+ },
3904
+ {
3905
+ "epoch": 2.78,
3906
+ "learning_rate": 2.871896808388608e-07,
3907
+ "loss": 0.1729,
3908
+ "step": 650
3909
+ },
3910
+ {
3911
+ "epoch": 2.78,
3912
+ "learning_rate": 2.7630079602323447e-07,
3913
+ "loss": 0.1827,
3914
+ "step": 651
3915
+ },
3916
+ {
3917
+ "epoch": 2.79,
3918
+ "learning_rate": 2.656194563930714e-07,
3919
+ "loss": 0.1731,
3920
+ "step": 652
3921
+ },
3922
+ {
3923
+ "epoch": 2.79,
3924
+ "learning_rate": 2.5514588993368894e-07,
3925
+ "loss": 0.165,
3926
+ "step": 653
3927
+ },
3928
+ {
3929
+ "epoch": 2.79,
3930
+ "learning_rate": 2.44880320195634e-07,
3931
+ "loss": 0.1792,
3932
+ "step": 654
3933
+ },
3934
+ {
3935
+ "epoch": 2.8,
3936
+ "learning_rate": 2.348229662899193e-07,
3937
+ "loss": 0.1679,
3938
+ "step": 655
3939
+ },
3940
+ {
3941
+ "epoch": 2.8,
3942
+ "learning_rate": 2.2497404288334245e-07,
3943
+ "loss": 0.1816,
3944
+ "step": 656
3945
+ },
3946
+ {
3947
+ "epoch": 2.81,
3948
+ "learning_rate": 2.1533376019391095e-07,
3949
+ "loss": 0.1878,
3950
+ "step": 657
3951
+ },
3952
+ {
3953
+ "epoch": 2.81,
3954
+ "learning_rate": 2.0590232398634114e-07,
3955
+ "loss": 0.171,
3956
+ "step": 658
3957
+ },
3958
+ {
3959
+ "epoch": 2.81,
3960
+ "learning_rate": 1.9667993556768517e-07,
3961
+ "loss": 0.176,
3962
+ "step": 659
3963
+ },
3964
+ {
3965
+ "epoch": 2.82,
3966
+ "learning_rate": 1.876667917830155e-07,
3967
+ "loss": 0.1644,
3968
+ "step": 660
3969
+ },
3970
+ {
3971
+ "epoch": 2.82,
3972
+ "learning_rate": 1.788630850112405e-07,
3973
+ "loss": 0.1828,
3974
+ "step": 661
3975
+ },
3976
+ {
3977
+ "epoch": 2.83,
3978
+ "learning_rate": 1.7026900316098217e-07,
3979
+ "loss": 0.1735,
3980
+ "step": 662
3981
+ },
3982
+ {
3983
+ "epoch": 2.83,
3984
+ "learning_rate": 1.6188472966658043e-07,
3985
+ "loss": 0.1623,
3986
+ "step": 663
3987
+ },
3988
+ {
3989
+ "epoch": 2.84,
3990
+ "learning_rate": 1.537104434841641e-07,
3991
+ "loss": 0.168,
3992
+ "step": 664
3993
+ },
3994
+ {
3995
+ "epoch": 2.84,
3996
+ "learning_rate": 1.4574631908784275e-07,
3997
+ "loss": 0.1736,
3998
+ "step": 665
3999
+ },
4000
+ {
4001
+ "epoch": 2.84,
4002
+ "learning_rate": 1.3799252646597428e-07,
4003
+ "loss": 0.1798,
4004
+ "step": 666
4005
+ },
4006
+ {
4007
+ "epoch": 2.85,
4008
+ "learning_rate": 1.3044923111754427e-07,
4009
+ "loss": 0.1769,
4010
+ "step": 667
4011
+ },
4012
+ {
4013
+ "epoch": 2.85,
4014
+ "learning_rate": 1.231165940486234e-07,
4015
+ "loss": 0.1807,
4016
+ "step": 668
4017
+ },
4018
+ {
4019
+ "epoch": 2.86,
4020
+ "learning_rate": 1.1599477176894136e-07,
4021
+ "loss": 0.1715,
4022
+ "step": 669
4023
+ },
4024
+ {
4025
+ "epoch": 2.86,
4026
+ "learning_rate": 1.0908391628854042e-07,
4027
+ "loss": 0.1717,
4028
+ "step": 670
4029
+ },
4030
+ {
4031
+ "epoch": 2.87,
4032
+ "learning_rate": 1.0238417511453158e-07,
4033
+ "loss": 0.1801,
4034
+ "step": 671
4035
+ },
4036
+ {
4037
+ "epoch": 2.87,
4038
+ "learning_rate": 9.589569124794918e-08,
4039
+ "loss": 0.1793,
4040
+ "step": 672
4041
+ },
4042
+ {
4043
+ "epoch": 2.87,
4044
+ "learning_rate": 8.961860318069115e-08,
4045
+ "loss": 0.1835,
4046
+ "step": 673
4047
+ },
4048
+ {
4049
+ "epoch": 2.88,
4050
+ "learning_rate": 8.355304489257254e-08,
4051
+ "loss": 0.1829,
4052
+ "step": 674
4053
+ },
4054
+ {
4055
+ "epoch": 2.88,
4056
+ "learning_rate": 7.769914584845994e-08,
4057
+ "loss": 0.1702,
4058
+ "step": 675
4059
+ },
4060
+ {
4061
+ "epoch": 2.89,
4062
+ "learning_rate": 7.205703099551042e-08,
4063
+ "loss": 0.1595,
4064
+ "step": 676
4065
+ },
4066
+ {
4067
+ "epoch": 2.89,
4068
+ "learning_rate": 6.662682076050031e-08,
4069
+ "loss": 0.1826,
4070
+ "step": 677
4071
+ },
4072
+ {
4073
+ "epoch": 2.9,
4074
+ "learning_rate": 6.140863104726391e-08,
4075
+ "loss": 0.1759,
4076
+ "step": 678
4077
+ },
4078
+ {
4079
+ "epoch": 2.9,
4080
+ "learning_rate": 5.6402573234207725e-08,
4081
+ "loss": 0.1607,
4082
+ "step": 679
4083
+ },
4084
+ {
4085
+ "epoch": 2.9,
4086
+ "learning_rate": 5.1608754171944555e-08,
4087
+ "loss": 0.1817,
4088
+ "step": 680
4089
+ },
4090
+ {
4091
+ "epoch": 2.91,
4092
+ "learning_rate": 4.702727618100422e-08,
4093
+ "loss": 0.1885,
4094
+ "step": 681
4095
+ },
4096
+ {
4097
+ "epoch": 2.91,
4098
+ "learning_rate": 4.2658237049655325e-08,
4099
+ "loss": 0.1933,
4100
+ "step": 682
4101
+ },
4102
+ {
4103
+ "epoch": 2.92,
4104
+ "learning_rate": 3.850173003181357e-08,
4105
+ "loss": 0.1591,
4106
+ "step": 683
4107
+ },
4108
+ {
4109
+ "epoch": 2.92,
4110
+ "learning_rate": 3.455784384505445e-08,
4111
+ "loss": 0.1785,
4112
+ "step": 684
4113
+ },
4114
+ {
4115
+ "epoch": 2.93,
4116
+ "learning_rate": 3.082666266872036e-08,
4117
+ "loss": 0.1668,
4118
+ "step": 685
4119
+ },
4120
+ {
4121
+ "epoch": 2.93,
4122
+ "learning_rate": 2.7308266142119788e-08,
4123
+ "loss": 0.17,
4124
+ "step": 686
4125
+ },
4126
+ {
4127
+ "epoch": 2.93,
4128
+ "learning_rate": 2.400272936283088e-08,
4129
+ "loss": 0.1752,
4130
+ "step": 687
4131
+ },
4132
+ {
4133
+ "epoch": 2.94,
4134
+ "learning_rate": 2.0910122885097194e-08,
4135
+ "loss": 0.1747,
4136
+ "step": 688
4137
+ },
4138
+ {
4139
+ "epoch": 2.94,
4140
+ "learning_rate": 1.8030512718322235e-08,
4141
+ "loss": 0.1698,
4142
+ "step": 689
4143
+ },
4144
+ {
4145
+ "epoch": 2.95,
4146
+ "learning_rate": 1.5363960325660565e-08,
4147
+ "loss": 0.1828,
4148
+ "step": 690
4149
+ },
4150
+ {
4151
+ "epoch": 2.95,
4152
+ "learning_rate": 1.2910522622705534e-08,
4153
+ "loss": 0.1781,
4154
+ "step": 691
4155
+ },
4156
+ {
4157
+ "epoch": 2.96,
4158
+ "learning_rate": 1.0670251976275803e-08,
4159
+ "loss": 0.1759,
4160
+ "step": 692
4161
+ },
4162
+ {
4163
+ "epoch": 2.96,
4164
+ "learning_rate": 8.643196203294013e-09,
4165
+ "loss": 0.1688,
4166
+ "step": 693
4167
+ },
4168
+ {
4169
+ "epoch": 2.96,
4170
+ "learning_rate": 6.82939856977094e-09,
4171
+ "loss": 0.17,
4172
+ "step": 694
4173
+ },
4174
+ {
4175
+ "epoch": 2.97,
4176
+ "learning_rate": 5.228897789878451e-09,
4177
+ "loss": 0.1785,
4178
+ "step": 695
4179
+ },
4180
+ {
4181
+ "epoch": 2.97,
4182
+ "learning_rate": 3.8417280251257235e-09,
4183
+ "loss": 0.1683,
4184
+ "step": 696
4185
+ },
4186
+ {
4187
+ "epoch": 2.98,
4188
+ "learning_rate": 2.667918883627607e-09,
4189
+ "loss": 0.1756,
4190
+ "step": 697
4191
+ },
4192
+ {
4193
+ "epoch": 2.98,
4194
+ "learning_rate": 1.7074954194729044e-09,
4195
+ "loss": 0.1746,
4196
+ "step": 698
4197
+ },
4198
+ {
4199
+ "epoch": 2.99,
4200
+ "learning_rate": 9.604781321936875e-10,
4201
+ "loss": 0.1719,
4202
+ "step": 699
4203
+ },
4204
+ {
4205
+ "epoch": 2.99,
4206
+ "learning_rate": 4.2688296632120705e-10,
4207
+ "loss": 0.1816,
4208
+ "step": 700
4209
+ },
4210
+ {
4211
+ "epoch": 2.99,
4212
+ "learning_rate": 1.0672131105282646e-10,
4213
+ "loss": 0.1719,
4214
+ "step": 701
4215
+ },
4216
+ {
4217
+ "epoch": 3.0,
4218
+ "learning_rate": 0.0,
4219
+ "loss": 0.1783,
4220
+ "step": 702
4221
+ },
4222
+ {
4223
+ "epoch": 3.0,
4224
+ "step": 702,
4225
+ "total_flos": 4.271125352719319e+17,
4226
+ "train_loss": 0.3649357236348666,
4227
+ "train_runtime": 3891.5455,
4228
+ "train_samples_per_second": 23.127,
4229
+ "train_steps_per_second": 0.18
4230
+ }
4231
+ ],
4232
+ "max_steps": 702,
4233
+ "num_train_epochs": 3,
4234
+ "total_flos": 4.271125352719319e+17,
4235
+ "trial_name": null,
4236
+ "trial_params": null
4237
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fdee6a90df0c48439c002ee726be6e54bbbbb89a97d97ff6449217f11b586fe0
3
+ size 3707