added the sample code
#1
by
Anash
- opened
README.md
CHANGED
@@ -2,4 +2,31 @@
|
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
|
5 |
-
A tiny randomly-initialized [ViLT](https://arxiv.org/abs/2102.03334) used for unit tests in the Transformers VQA pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
|
5 |
+
A tiny randomly-initialized [ViLT](https://arxiv.org/abs/2102.03334) used for unit tests in the Transformers VQA pipeline
|
6 |
+
|
7 |
+
### How to use
|
8 |
+
|
9 |
+
Here is how to use this model in PyTorch:
|
10 |
+
|
11 |
+
```python
|
12 |
+
from transformers import ViltProcessor, ViltForQuestionAnswering
|
13 |
+
import requests
|
14 |
+
from PIL import Image
|
15 |
+
|
16 |
+
# prepare image + question
|
17 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
18 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
19 |
+
text = "How many cats are there?"
|
20 |
+
|
21 |
+
processor = ViltProcessor.from_pretrained("hf-internal-testing/tiny-vilt-random-vqa")
|
22 |
+
model = ViltForQuestionAnswering.from_pretrained("hf-internal-testing/tiny-vilt-random-vqa")
|
23 |
+
|
24 |
+
# prepare inputs
|
25 |
+
encoding = processor(image, text, return_tensors="pt")
|
26 |
+
|
27 |
+
# forward pass
|
28 |
+
outputs = model(**encoding)
|
29 |
+
logits = outputs.logits
|
30 |
+
idx = logits.argmax(-1).item()
|
31 |
+
print("Predicted answer:", model.config.id2label[idx])
|
32 |
+
```
|