heziyevv commited on
Commit
b9772de
·
1 Parent(s): f5f8418

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 267.70 +/- 15.52
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5550c14310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5550c143a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5550c14430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5550c144c0>", "_build": "<function ActorCriticPolicy._build at 0x7f5550c14550>", "forward": "<function ActorCriticPolicy.forward at 0x7f5550c145e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5550c14670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5550c14700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5550c14790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5550c14820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5550c148b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5550c14940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5550c17740>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678898062477897812, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOZVHz2uqYi64HcwuAA9LLOis7s6rW1NNwAAgD8AAIA/kyoGPhTAxbrzPkc6MfWNtgp587tNemy5AACAPwAAgD9mIjs8pJALu5aDmjzTB5Y8/jbsOwh/gb0AAIA/AACAP2Cnjz6vl0c/MplYPGcdj75yJ9k9TkLGvQAAAAAAAAAAjRLLPSlQdbqeKJg6AmuJNRKo1bpBMbK5AACAPwAAgD+ao7i89nwvutDwM7hXgoezCZD4OWi9UTcAAIA/AACAPzM9A7zDCR262iFwO5BdgzbmHUW6Yo6KugAAgD8AAIA/8xePvfOj7D6uVSQ+ANfHvt/LRD1KLzY9AAAAAAAAAAANrJU9XPc1ukofobyTTlk1rFkku4YLwrQAAAAAAAAAAHPIgD17mp+6wCeUOU62WradDtA630upuAAAgD8AAIA/mpc8vR+F3rmSWxI8ce91NttzpzsOI2w1AACAPwAAgD8Avmk9e1CbukzsnLozToO1oYD7ujrktDkAAIA/AACAP2bKlrz2bEu6465XOwlIYDWNYvc5mMF+ugAAgD8AAIA/mi93PRQGlboYaN062vagNdu697r8JwC6AACAPwAAgD+mBZm94QyouqbiurqgOcK1F4C8OeJP1jkAAIA/AACAP4CQIb0pcAe60a8Ku94JuzeT6qC6nRynOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4sgDkcW9YkCUhpRSlIwBbJRN6AOMAXSUR0CSz6L5AQg+dX2UKGgGaAloD0MIfa62Yn+TUECUhpRSlGgVS/xoFkdAktAAnx8UmHV9lChoBmgJaA9DCNsWZTZIX2VAlIaUUpRoFU3oA2gWR0CS0+RwqAjIdX2UKGgGaAloD0MIIywq4nTLYkCUhpRSlGgVTegDaBZHQJLpuU0Nz8x1fZQoaAZoCWgPQwhNSkG3lyJlQJSGlFKUaBVN6ANoFkdAkxG/R/mT1XV9lChoBmgJaA9DCNRJtrocFmNAlIaUUpRoFU3oA2gWR0CTEsSW7e2vdX2UKGgGaAloD0MIGQRWDi3aXkCUhpRSlGgVTegDaBZHQJMTUD7qIJt1fZQoaAZoCWgPQwiN0TqqGtBjQJSGlFKUaBVN6ANoFkdAkxbBS9/SY3V9lChoBmgJaA9DCFUxlX5CHmJAlIaUUpRoFU3oA2gWR0CTF7A4n4O+dX2UKGgGaAloD0MI/Pz34LUBZ0CUhpRSlGgVTegDaBZHQJMZ3ylN1yN1fZQoaAZoCWgPQwjVBieiX9VkQJSGlFKUaBVN6ANoFkdAkxn6UeMho3V9lChoBmgJaA9DCAYujzUjKWVAlIaUUpRoFU3oA2gWR0CTG51IRRMwdX2UKGgGaAloD0MI+vAsQUZUZ0CUhpRSlGgVTegDaBZHQJMb/LJSzgN1fZQoaAZoCWgPQwj+7h01Jg5mQJSGlFKUaBVN6ANoFkdAkxzVjqfOEHV9lChoBmgJaA9DCNQnucMme2VAlIaUUpRoFU3oA2gWR0CTHP3FkxyodX2UKGgGaAloD0MI0jQomgeZYkCUhpRSlGgVTegDaBZHQJMfBNBWxQl1fZQoaAZoCWgPQwi7ZBwj2X5lQJSGlFKUaBVN6ANoFkdAkyJ3w5NoJ3V9lChoBmgJaA9DCAMHtHSF4GJAlIaUUpRoFU3oA2gWR0CTIteDnNgSdX2UKGgGaAloD0MIqdpugm+awj+UhpRSlGgVTRoBaBZHQJMkDHsC1Z11fZQoaAZoCWgPQwgJ/Uy9budgQJSGlFKUaBVN6ANoFkdAkybIwh4dIXV9lChoBmgJaA9DCJ0q3zMSQFFAlIaUUpRoFUv6aBZHQJM0WUkfLcN1fZQoaAZoCWgPQwgmqrcGNmNgQJSGlFKUaBVN6ANoFkdAk0JswpON53V9lChoBmgJaA9DCBegbTXrqGVAlIaUUpRoFU3oA2gWR0CTZUgam4y5dX2UKGgGaAloD0MI5e/eUWMvYECUhpRSlGgVTegDaBZHQJNmvNGEwnJ1fZQoaAZoCWgPQwizCMVWUHxiQJSGlFKUaBVN6ANoFkdAk2eMDr7fpHV9lChoBmgJaA9DCCTwh59/ZWZAlIaUUpRoFU3oA2gWR0CTbL8hs67vdX2UKGgGaAloD0MI8wTCTrHyXUCUhpRSlGgVTegDaBZHQJNx4xpL26F1fZQoaAZoCWgPQwi8XMR34mVmQJSGlFKUaBVN6ANoFkdAk3IOD8LronV9lChoBmgJaA9DCLN78rBQmGNAlIaUUpRoFU3oA2gWR0CTdPnEl3QldX2UKGgGaAloD0MIRS44gz8zYkCUhpRSlGgVTegDaBZHQJN1r2Xb/Ot1fZQoaAZoCWgPQwjfpj/7EcJkQJSGlFKUaBVN6ANoFkdAk3ckZWJaaHV9lChoBmgJaA9DCM3MzMzM1mJAlIaUUpRoFU3oA2gWR0CTd289fTkRdX2UKGgGaAloD0MIt/EnKhurZkCUhpRSlGgVTegDaBZHQJN6nQv6CUZ1fZQoaAZoCWgPQwgPtW0YBfEwQJSGlFKUaBVNBAFoFkdAk3tWh7E5yXV9lChoBmgJaA9DCMqNImsNAGRAlIaUUpRoFU3oA2gWR0CTfofqoqCpdX2UKGgGaAloD0MIeNMtO0SSY0CUhpRSlGgVTegDaBZHQJOANxhlUZN1fZQoaAZoCWgPQwi3C811GkhmQJSGlFKUaBVN6ANoFkdAk4L6lgtvoHV9lChoBmgJaA9DCIf+CS5WtAFAlIaUUpRoFU0EAWgWR0CThPAs052hdX2UKGgGaAloD0MIYtaLoZyJYkCUhpRSlGgVTegDaBZHQJONEb2lEZ11fZQoaAZoCWgPQwhoCMcse5tlQJSGlFKUaBVN6ANoFkdAk5iaQq7ROXV9lChoBmgJaA9DCATG+gYmjlxAlIaUUpRoFU3oA2gWR0CTwZZdfLLZdX2UKGgGaAloD0MIFf93RAXSYkCUhpRSlGgVTegDaBZHQJPCriXIEKV1fZQoaAZoCWgPQwhP6svSTvNgQJSGlFKUaBVN6ANoFkdAk8dT2nKnvXV9lChoBmgJaA9DCKX5Y1obN2NAlIaUUpRoFU3oA2gWR0CTy01k1/DtdX2UKGgGaAloD0MIPfIHA89qYkCUhpRSlGgVTegDaBZHQJPLfpeNT991fZQoaAZoCWgPQwhDcceb/HFeQJSGlFKUaBVN6ANoFkdAk82shkiD/XV9lChoBmgJaA9DCLqilBCs/mRAlIaUUpRoFU3oA2gWR0CTzjWPcSGrdX2UKGgGaAloD0MIvEBJgYVEZECUhpRSlGgVTegDaBZHQJPPc1vVEux1fZQoaAZoCWgPQwh6NNWT+ZphQJSGlFKUaBVN6ANoFkdAk9IJfdAPd3V9lChoBmgJaA9DCIoFvqJbFWZAlIaUUpRoFU3oA2gWR0CT0ssXizcAdX2UKGgGaAloD0MIPx2PGaikPUCUhpRSlGgVS/VoFkdAk9UU1dgOSXV9lChoBmgJaA9DCJKVXwbjHGdAlIaUUpRoFU3oA2gWR0CT1iXAuZkTdX2UKGgGaAloD0MIclKY9zjcUECUhpRSlGgVS+5oFkdAk9fPSx7iQ3V9lChoBmgJaA9DCF1r71PVhmFAlIaUUpRoFU3oA2gWR0CT19D28IzFdX2UKGgGaAloD0MI0/nwLMF3YUCUhpRSlGgVTegDaBZHQJPabmzSkTJ1fZQoaAZoCWgPQwi6hENv8XADQJSGlFKUaBVL/GgWR0CT2uPLxI8RdX2UKGgGaAloD0MI1ldXBWpgX0CUhpRSlGgVTegDaBZHQJPcr4M4LkV1fZQoaAZoCWgPQwigw3x5AT5DQJSGlFKUaBVL/mgWR0CT4LSmqHXVdX2UKGgGaAloD0MIFCAKZkwhRkCUhpRSlGgVS+1oFkdAk+QQ6EJ0GXV9lChoBmgJaA9DCKhTHt0I5VFAlIaUUpRoFUveaBZHQJPlfG6wt8N1fZQoaAZoCWgPQwj1u7A1W4NkQJSGlFKUaBVN6ANoFkdAk+WhQJokA3V9lChoBmgJaA9DCOfib3uCLWRAlIaUUpRoFU3oA2gWR0CT8QKPn0TUdX2UKGgGaAloD0MIWOIBZVPyRkCUhpRSlGgVTRYBaBZHQJP0CQuEmIF1fZQoaAZoCWgPQwgErFW7pv5iQJSGlFKUaBVN6ANoFkdAlBOyGrS3LHV9lChoBmgJaA9DCMXjolpEcmJAlIaUUpRoFU3oA2gWR0CUFL25xzaLdX2UKGgGaAloD0MIjq89syTVYECUhpRSlGgVTegDaBZHQJQf5JGvwE11fZQoaAZoCWgPQwjjM9k/T5dhQJSGlFKUaBVN6ANoFkdAlCNwUtZmqnV9lChoBmgJaA9DCCGRtvEn8mZAlIaUUpRoFU3oA2gWR0CUJllsxfv4dX2UKGgGaAloD0MIWWlSCrrPW0CUhpRSlGgVTegDaBZHQJQqwzi0fHR1fZQoaAZoCWgPQwgawcb1b4xhQJSGlFKUaBVN6ANoFkdAlC6YY3vQW3V9lChoBmgJaA9DCD8djxmoYmVAlIaUUpRoFU3oA2gWR0CUMakxREWqdX2UKGgGaAloD0MIDHcujHQ7Y0CUhpRSlGgVTegDaBZHQJQ0k9jgAIZ1fZQoaAZoCWgPQwhJ9Z1flGJjQJSGlFKUaBVN6ANoFkdAlDURC+lCTnV9lChoBmgJaA9DCJ31KcfkZ2NAlIaUUpRoFU3oA2gWR0CUNoaBI4EPdX2UKGgGaAloD0MI106UhMSyYUCUhpRSlGgVTegDaBZHQJQ8utCAtnR1fZQoaAZoCWgPQwjs3LQZpz5fQJSGlFKUaBVN6ANoFkdAlD3IyO7xu3V9lChoBmgJaA9DCOKvyRr1S2RAlIaUUpRoFU3oA2gWR0CUPeU83dbgdX2UKGgGaAloD0MI00ohkMv/Y0CUhpRSlGgVTegDaBZHQJRHJgYxcml1fZQoaAZoCWgPQwjVrglpjURdQJSGlFKUaBVN6ANoFkdAlEoR5ooNNXV9lChoBmgJaA9DCFYPmIfMMmZAlIaUUpRoFU3oA2gWR0CUbyYjB2wFdX2UKGgGaAloD0MIzczMzMxeZkCUhpRSlGgVTegDaBZHQJRwJW6shgV1fZQoaAZoCWgPQwg02T9Pg0hkQJSGlFKUaBVN6ANoFkdAlHguyiVSoHV9lChoBmgJaA9DCPwdigJ9eF9AlIaUUpRoFU3oA2gWR0CUeoHtnf2sdX2UKGgGaAloD0MIl3X/WIioQkCUhpRSlGgVS9FoFkdAlHvd2gWadHV9lChoBmgJaA9DCBFtx9Td2WFAlIaUUpRoFU3oA2gWR0CUfFrsjVx0dX2UKGgGaAloD0MILSeh9IV4YECUhpRSlGgVTegDaBZHQJR/McvM8ox1fZQoaAZoCWgPQwiWBRN/FE0+QJSGlFKUaBVNBQFoFkdAlH+V4C6pYXV9lChoBmgJaA9DCCv2l92TjGFAlIaUUpRoFU3oA2gWR0CUgkn889wFdX2UKGgGaAloD0MIpWYPtAKPZkCUhpRSlGgVTegDaBZHQJSE4QvpQk51fZQoaAZoCWgPQwjRksfT8o5gQJSGlFKUaBVN6ANoFkdAlIeZlnRLK3V9lChoBmgJaA9DCOtySkBM2EdAlIaUUpRoFU0lAWgWR0CUh78/UvwmdX2UKGgGaAloD0MI1ZXP8jzCZECUhpRSlGgVTegDaBZHQJSIAtXgccV1fZQoaAZoCWgPQwiWI2Qgz3hNQJSGlFKUaBVL9mgWR0CUiGW2gFotdX2UKGgGaAloD0MISdqNPubtXkCUhpRSlGgVTegDaBZHQJSJM54nndR1fZQoaAZoCWgPQwhKtOTxtFA7QJSGlFKUaBVNAAFoFkdAlIt9zr/sFHV9lChoBmgJaA9DCBVVv9L5zmFAlIaUUpRoFU3oA2gWR0CUjuQ8wHqvdX2UKGgGaAloD0MIgLqBAm8FY0CUhpRSlGgVTegDaBZHQJSQR/3Fkx11fZQoaAZoCWgPQwhzvALRk51kQJSGlFKUaBVN6ANoFkdAlJBs2eg+QnV9lChoBmgJaA9DCLucEhATRGZAlIaUUpRoFU3oA2gWR0CUnYAEMb3odX2UKGgGaAloD0MIXMtkOJ6OZkCUhpRSlGgVTegDaBZHQJShyYJE6T51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0f6da3353208a5423e66942a4b37fca4825d45b4f2a9f47b0b8e99c5b9a7752
3
+ size 147417
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5550c14310>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5550c143a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5550c14430>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5550c144c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f5550c14550>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f5550c145e0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5550c14670>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5550c14700>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f5550c14790>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5550c14820>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5550c148b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5550c14940>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f5550c17740>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678898062477897812,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOZVHz2uqYi64HcwuAA9LLOis7s6rW1NNwAAgD8AAIA/kyoGPhTAxbrzPkc6MfWNtgp587tNemy5AACAPwAAgD9mIjs8pJALu5aDmjzTB5Y8/jbsOwh/gb0AAIA/AACAP2Cnjz6vl0c/MplYPGcdj75yJ9k9TkLGvQAAAAAAAAAAjRLLPSlQdbqeKJg6AmuJNRKo1bpBMbK5AACAPwAAgD+ao7i89nwvutDwM7hXgoezCZD4OWi9UTcAAIA/AACAPzM9A7zDCR262iFwO5BdgzbmHUW6Yo6KugAAgD8AAIA/8xePvfOj7D6uVSQ+ANfHvt/LRD1KLzY9AAAAAAAAAAANrJU9XPc1ukofobyTTlk1rFkku4YLwrQAAAAAAAAAAHPIgD17mp+6wCeUOU62WradDtA630upuAAAgD8AAIA/mpc8vR+F3rmSWxI8ce91NttzpzsOI2w1AACAPwAAgD8Avmk9e1CbukzsnLozToO1oYD7ujrktDkAAIA/AACAP2bKlrz2bEu6465XOwlIYDWNYvc5mMF+ugAAgD8AAIA/mi93PRQGlboYaN062vagNdu697r8JwC6AACAPwAAgD+mBZm94QyouqbiurqgOcK1F4C8OeJP1jkAAIA/AACAP4CQIb0pcAe60a8Ku94JuzeT6qC6nRynOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4sgDkcW9YkCUhpRSlIwBbJRN6AOMAXSUR0CSz6L5AQg+dX2UKGgGaAloD0MIfa62Yn+TUECUhpRSlGgVS/xoFkdAktAAnx8UmHV9lChoBmgJaA9DCNsWZTZIX2VAlIaUUpRoFU3oA2gWR0CS0+RwqAjIdX2UKGgGaAloD0MIIywq4nTLYkCUhpRSlGgVTegDaBZHQJLpuU0Nz8x1fZQoaAZoCWgPQwhNSkG3lyJlQJSGlFKUaBVN6ANoFkdAkxG/R/mT1XV9lChoBmgJaA9DCNRJtrocFmNAlIaUUpRoFU3oA2gWR0CTEsSW7e2vdX2UKGgGaAloD0MIGQRWDi3aXkCUhpRSlGgVTegDaBZHQJMTUD7qIJt1fZQoaAZoCWgPQwiN0TqqGtBjQJSGlFKUaBVN6ANoFkdAkxbBS9/SY3V9lChoBmgJaA9DCFUxlX5CHmJAlIaUUpRoFU3oA2gWR0CTF7A4n4O+dX2UKGgGaAloD0MI/Pz34LUBZ0CUhpRSlGgVTegDaBZHQJMZ3ylN1yN1fZQoaAZoCWgPQwjVBieiX9VkQJSGlFKUaBVN6ANoFkdAkxn6UeMho3V9lChoBmgJaA9DCAYujzUjKWVAlIaUUpRoFU3oA2gWR0CTG51IRRMwdX2UKGgGaAloD0MI+vAsQUZUZ0CUhpRSlGgVTegDaBZHQJMb/LJSzgN1fZQoaAZoCWgPQwj+7h01Jg5mQJSGlFKUaBVN6ANoFkdAkxzVjqfOEHV9lChoBmgJaA9DCNQnucMme2VAlIaUUpRoFU3oA2gWR0CTHP3FkxyodX2UKGgGaAloD0MI0jQomgeZYkCUhpRSlGgVTegDaBZHQJMfBNBWxQl1fZQoaAZoCWgPQwi7ZBwj2X5lQJSGlFKUaBVN6ANoFkdAkyJ3w5NoJ3V9lChoBmgJaA9DCAMHtHSF4GJAlIaUUpRoFU3oA2gWR0CTIteDnNgSdX2UKGgGaAloD0MIqdpugm+awj+UhpRSlGgVTRoBaBZHQJMkDHsC1Z11fZQoaAZoCWgPQwgJ/Uy9budgQJSGlFKUaBVN6ANoFkdAkybIwh4dIXV9lChoBmgJaA9DCJ0q3zMSQFFAlIaUUpRoFUv6aBZHQJM0WUkfLcN1fZQoaAZoCWgPQwgmqrcGNmNgQJSGlFKUaBVN6ANoFkdAk0JswpON53V9lChoBmgJaA9DCBegbTXrqGVAlIaUUpRoFU3oA2gWR0CTZUgam4y5dX2UKGgGaAloD0MI5e/eUWMvYECUhpRSlGgVTegDaBZHQJNmvNGEwnJ1fZQoaAZoCWgPQwizCMVWUHxiQJSGlFKUaBVN6ANoFkdAk2eMDr7fpHV9lChoBmgJaA9DCCTwh59/ZWZAlIaUUpRoFU3oA2gWR0CTbL8hs67vdX2UKGgGaAloD0MI8wTCTrHyXUCUhpRSlGgVTegDaBZHQJNx4xpL26F1fZQoaAZoCWgPQwi8XMR34mVmQJSGlFKUaBVN6ANoFkdAk3IOD8LronV9lChoBmgJaA9DCLN78rBQmGNAlIaUUpRoFU3oA2gWR0CTdPnEl3QldX2UKGgGaAloD0MIRS44gz8zYkCUhpRSlGgVTegDaBZHQJN1r2Xb/Ot1fZQoaAZoCWgPQwjfpj/7EcJkQJSGlFKUaBVN6ANoFkdAk3ckZWJaaHV9lChoBmgJaA9DCM3MzMzM1mJAlIaUUpRoFU3oA2gWR0CTd289fTkRdX2UKGgGaAloD0MIt/EnKhurZkCUhpRSlGgVTegDaBZHQJN6nQv6CUZ1fZQoaAZoCWgPQwgPtW0YBfEwQJSGlFKUaBVNBAFoFkdAk3tWh7E5yXV9lChoBmgJaA9DCMqNImsNAGRAlIaUUpRoFU3oA2gWR0CTfofqoqCpdX2UKGgGaAloD0MIeNMtO0SSY0CUhpRSlGgVTegDaBZHQJOANxhlUZN1fZQoaAZoCWgPQwi3C811GkhmQJSGlFKUaBVN6ANoFkdAk4L6lgtvoHV9lChoBmgJaA9DCIf+CS5WtAFAlIaUUpRoFU0EAWgWR0CThPAs052hdX2UKGgGaAloD0MIYtaLoZyJYkCUhpRSlGgVTegDaBZHQJONEb2lEZ11fZQoaAZoCWgPQwhoCMcse5tlQJSGlFKUaBVN6ANoFkdAk5iaQq7ROXV9lChoBmgJaA9DCATG+gYmjlxAlIaUUpRoFU3oA2gWR0CTwZZdfLLZdX2UKGgGaAloD0MIFf93RAXSYkCUhpRSlGgVTegDaBZHQJPCriXIEKV1fZQoaAZoCWgPQwhP6svSTvNgQJSGlFKUaBVN6ANoFkdAk8dT2nKnvXV9lChoBmgJaA9DCKX5Y1obN2NAlIaUUpRoFU3oA2gWR0CTy01k1/DtdX2UKGgGaAloD0MIPfIHA89qYkCUhpRSlGgVTegDaBZHQJPLfpeNT991fZQoaAZoCWgPQwhDcceb/HFeQJSGlFKUaBVN6ANoFkdAk82shkiD/XV9lChoBmgJaA9DCLqilBCs/mRAlIaUUpRoFU3oA2gWR0CTzjWPcSGrdX2UKGgGaAloD0MIvEBJgYVEZECUhpRSlGgVTegDaBZHQJPPc1vVEux1fZQoaAZoCWgPQwh6NNWT+ZphQJSGlFKUaBVN6ANoFkdAk9IJfdAPd3V9lChoBmgJaA9DCIoFvqJbFWZAlIaUUpRoFU3oA2gWR0CT0ssXizcAdX2UKGgGaAloD0MIPx2PGaikPUCUhpRSlGgVS/VoFkdAk9UU1dgOSXV9lChoBmgJaA9DCJKVXwbjHGdAlIaUUpRoFU3oA2gWR0CT1iXAuZkTdX2UKGgGaAloD0MIclKY9zjcUECUhpRSlGgVS+5oFkdAk9fPSx7iQ3V9lChoBmgJaA9DCF1r71PVhmFAlIaUUpRoFU3oA2gWR0CT19D28IzFdX2UKGgGaAloD0MI0/nwLMF3YUCUhpRSlGgVTegDaBZHQJPabmzSkTJ1fZQoaAZoCWgPQwi6hENv8XADQJSGlFKUaBVL/GgWR0CT2uPLxI8RdX2UKGgGaAloD0MI1ldXBWpgX0CUhpRSlGgVTegDaBZHQJPcr4M4LkV1fZQoaAZoCWgPQwigw3x5AT5DQJSGlFKUaBVL/mgWR0CT4LSmqHXVdX2UKGgGaAloD0MIFCAKZkwhRkCUhpRSlGgVS+1oFkdAk+QQ6EJ0GXV9lChoBmgJaA9DCKhTHt0I5VFAlIaUUpRoFUveaBZHQJPlfG6wt8N1fZQoaAZoCWgPQwj1u7A1W4NkQJSGlFKUaBVN6ANoFkdAk+WhQJokA3V9lChoBmgJaA9DCOfib3uCLWRAlIaUUpRoFU3oA2gWR0CT8QKPn0TUdX2UKGgGaAloD0MIWOIBZVPyRkCUhpRSlGgVTRYBaBZHQJP0CQuEmIF1fZQoaAZoCWgPQwgErFW7pv5iQJSGlFKUaBVN6ANoFkdAlBOyGrS3LHV9lChoBmgJaA9DCMXjolpEcmJAlIaUUpRoFU3oA2gWR0CUFL25xzaLdX2UKGgGaAloD0MIjq89syTVYECUhpRSlGgVTegDaBZHQJQf5JGvwE11fZQoaAZoCWgPQwjjM9k/T5dhQJSGlFKUaBVN6ANoFkdAlCNwUtZmqnV9lChoBmgJaA9DCCGRtvEn8mZAlIaUUpRoFU3oA2gWR0CUJllsxfv4dX2UKGgGaAloD0MIWWlSCrrPW0CUhpRSlGgVTegDaBZHQJQqwzi0fHR1fZQoaAZoCWgPQwgawcb1b4xhQJSGlFKUaBVN6ANoFkdAlC6YY3vQW3V9lChoBmgJaA9DCD8djxmoYmVAlIaUUpRoFU3oA2gWR0CUMakxREWqdX2UKGgGaAloD0MIDHcujHQ7Y0CUhpRSlGgVTegDaBZHQJQ0k9jgAIZ1fZQoaAZoCWgPQwhJ9Z1flGJjQJSGlFKUaBVN6ANoFkdAlDURC+lCTnV9lChoBmgJaA9DCJ31KcfkZ2NAlIaUUpRoFU3oA2gWR0CUNoaBI4EPdX2UKGgGaAloD0MI106UhMSyYUCUhpRSlGgVTegDaBZHQJQ8utCAtnR1fZQoaAZoCWgPQwjs3LQZpz5fQJSGlFKUaBVN6ANoFkdAlD3IyO7xu3V9lChoBmgJaA9DCOKvyRr1S2RAlIaUUpRoFU3oA2gWR0CUPeU83dbgdX2UKGgGaAloD0MI00ohkMv/Y0CUhpRSlGgVTegDaBZHQJRHJgYxcml1fZQoaAZoCWgPQwjVrglpjURdQJSGlFKUaBVN6ANoFkdAlEoR5ooNNXV9lChoBmgJaA9DCFYPmIfMMmZAlIaUUpRoFU3oA2gWR0CUbyYjB2wFdX2UKGgGaAloD0MIzczMzMxeZkCUhpRSlGgVTegDaBZHQJRwJW6shgV1fZQoaAZoCWgPQwg02T9Pg0hkQJSGlFKUaBVN6ANoFkdAlHguyiVSoHV9lChoBmgJaA9DCPwdigJ9eF9AlIaUUpRoFU3oA2gWR0CUeoHtnf2sdX2UKGgGaAloD0MIl3X/WIioQkCUhpRSlGgVS9FoFkdAlHvd2gWadHV9lChoBmgJaA9DCBFtx9Td2WFAlIaUUpRoFU3oA2gWR0CUfFrsjVx0dX2UKGgGaAloD0MILSeh9IV4YECUhpRSlGgVTegDaBZHQJR/McvM8ox1fZQoaAZoCWgPQwiWBRN/FE0+QJSGlFKUaBVNBQFoFkdAlH+V4C6pYXV9lChoBmgJaA9DCCv2l92TjGFAlIaUUpRoFU3oA2gWR0CUgkn889wFdX2UKGgGaAloD0MIpWYPtAKPZkCUhpRSlGgVTegDaBZHQJSE4QvpQk51fZQoaAZoCWgPQwjRksfT8o5gQJSGlFKUaBVN6ANoFkdAlIeZlnRLK3V9lChoBmgJaA9DCOtySkBM2EdAlIaUUpRoFU0lAWgWR0CUh78/UvwmdX2UKGgGaAloD0MI1ZXP8jzCZECUhpRSlGgVTegDaBZHQJSIAtXgccV1fZQoaAZoCWgPQwiWI2Qgz3hNQJSGlFKUaBVL9mgWR0CUiGW2gFotdX2UKGgGaAloD0MISdqNPubtXkCUhpRSlGgVTegDaBZHQJSJM54nndR1fZQoaAZoCWgPQwhKtOTxtFA7QJSGlFKUaBVNAAFoFkdAlIt9zr/sFHV9lChoBmgJaA9DCBVVv9L5zmFAlIaUUpRoFU3oA2gWR0CUjuQ8wHqvdX2UKGgGaAloD0MIgLqBAm8FY0CUhpRSlGgVTegDaBZHQJSQR/3Fkx11fZQoaAZoCWgPQwhzvALRk51kQJSGlFKUaBVN6ANoFkdAlJBs2eg+QnV9lChoBmgJaA9DCLucEhATRGZAlIaUUpRoFU3oA2gWR0CUnYAEMb3odX2UKGgGaAloD0MIXMtkOJ6OZkCUhpRSlGgVTegDaBZHQJShyYJE6T51ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17cc8ddd3a79d7181433630921ec130a91b26cf50d84c67d74156d59e7d61c65
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cb90a2f1775e006201701329903d3c7de14227993585e2fdb8ef42bfe392044
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (196 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 267.7031109520353, "std_reward": 15.519155083475132, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-15T17:15:57.487947"}