hewliyang commited on
Commit
7a89fed
·
verified ·
1 Parent(s): 3916523

Upload ParlerTTSForConditionalGeneration

Browse files
Files changed (4) hide show
  1. README.md +199 -0
  2. config.json +276 -0
  3. generation_config.json +12 -0
  4. model.safetensors +3 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,276 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/content/parler-tts/output_dir_training",
3
+ "architectures": [
4
+ "ParlerTTSForConditionalGeneration"
5
+ ],
6
+ "audio_encoder": {
7
+ "_name_or_path": "ylacombe/dac_44khZ_8kbps",
8
+ "add_cross_attention": false,
9
+ "architectures": [
10
+ "DACModel"
11
+ ],
12
+ "bad_words_ids": null,
13
+ "begin_suppress_tokens": null,
14
+ "bos_token_id": null,
15
+ "chunk_size_feed_forward": 0,
16
+ "codebook_size": 1024,
17
+ "cross_attention_hidden_size": null,
18
+ "decoder_start_token_id": null,
19
+ "diversity_penalty": 0.0,
20
+ "do_sample": false,
21
+ "early_stopping": false,
22
+ "encoder_no_repeat_ngram_size": 0,
23
+ "eos_token_id": null,
24
+ "exponential_decay_length_penalty": null,
25
+ "finetuning_task": null,
26
+ "forced_bos_token_id": null,
27
+ "forced_eos_token_id": null,
28
+ "frame_rate": 86,
29
+ "id2label": {
30
+ "0": "LABEL_0",
31
+ "1": "LABEL_1"
32
+ },
33
+ "is_decoder": false,
34
+ "is_encoder_decoder": false,
35
+ "label2id": {
36
+ "LABEL_0": 0,
37
+ "LABEL_1": 1
38
+ },
39
+ "latent_dim": 1024,
40
+ "length_penalty": 1.0,
41
+ "max_length": 20,
42
+ "min_length": 0,
43
+ "model_bitrate": 8,
44
+ "model_type": "dac",
45
+ "no_repeat_ngram_size": 0,
46
+ "num_beam_groups": 1,
47
+ "num_beams": 1,
48
+ "num_codebooks": 9,
49
+ "num_return_sequences": 1,
50
+ "output_attentions": false,
51
+ "output_hidden_states": false,
52
+ "output_scores": false,
53
+ "pad_token_id": null,
54
+ "prefix": null,
55
+ "problem_type": null,
56
+ "pruned_heads": {},
57
+ "remove_invalid_values": false,
58
+ "repetition_penalty": 1.0,
59
+ "return_dict": true,
60
+ "return_dict_in_generate": false,
61
+ "sampling_rate": 44100,
62
+ "sep_token_id": null,
63
+ "suppress_tokens": null,
64
+ "task_specific_params": null,
65
+ "temperature": 1.0,
66
+ "tf_legacy_loss": false,
67
+ "tie_encoder_decoder": false,
68
+ "tie_word_embeddings": true,
69
+ "tokenizer_class": null,
70
+ "top_k": 50,
71
+ "top_p": 1.0,
72
+ "torch_dtype": "float32",
73
+ "torchscript": false,
74
+ "typical_p": 1.0,
75
+ "use_bfloat16": false
76
+ },
77
+ "decoder": {
78
+ "_name_or_path": "/fsx/yoach/tmp/artefacts/decoder_400M/",
79
+ "activation_dropout": 0.0,
80
+ "activation_function": "gelu",
81
+ "add_cross_attention": true,
82
+ "architectures": [
83
+ "ParlerTTSForCausalLM"
84
+ ],
85
+ "attention_dropout": 0.0,
86
+ "bad_words_ids": null,
87
+ "begin_suppress_tokens": null,
88
+ "bos_token_id": 1025,
89
+ "chunk_size_feed_forward": 0,
90
+ "cross_attention_hidden_size": null,
91
+ "decoder_start_token_id": null,
92
+ "diversity_penalty": 0.0,
93
+ "do_sample": false,
94
+ "dropout": 0.1,
95
+ "early_stopping": false,
96
+ "encoder_no_repeat_ngram_size": 0,
97
+ "eos_token_id": 1024,
98
+ "exponential_decay_length_penalty": null,
99
+ "ffn_dim": 4096,
100
+ "finetuning_task": null,
101
+ "forced_bos_token_id": null,
102
+ "forced_eos_token_id": null,
103
+ "hidden_size": 1024,
104
+ "id2label": {
105
+ "0": "LABEL_0",
106
+ "1": "LABEL_1"
107
+ },
108
+ "initializer_factor": 0.02,
109
+ "is_decoder": true,
110
+ "is_encoder_decoder": false,
111
+ "label2id": {
112
+ "LABEL_0": 0,
113
+ "LABEL_1": 1
114
+ },
115
+ "layerdrop": 0.0,
116
+ "length_penalty": 1.0,
117
+ "max_length": 20,
118
+ "max_position_embeddings": 4096,
119
+ "min_length": 0,
120
+ "model_type": "parler_tts_decoder",
121
+ "no_repeat_ngram_size": 0,
122
+ "num_attention_heads": 16,
123
+ "num_beam_groups": 1,
124
+ "num_beams": 1,
125
+ "num_codebooks": 9,
126
+ "num_hidden_layers": 24,
127
+ "num_return_sequences": 1,
128
+ "output_attentions": false,
129
+ "output_hidden_states": false,
130
+ "output_scores": false,
131
+ "pad_token_id": 1024,
132
+ "prefix": null,
133
+ "problem_type": null,
134
+ "pruned_heads": {},
135
+ "remove_invalid_values": false,
136
+ "repetition_penalty": 1.0,
137
+ "return_dict": true,
138
+ "return_dict_in_generate": false,
139
+ "scale_embedding": false,
140
+ "sep_token_id": null,
141
+ "suppress_tokens": null,
142
+ "task_specific_params": null,
143
+ "temperature": 1.0,
144
+ "tf_legacy_loss": false,
145
+ "tie_encoder_decoder": false,
146
+ "tie_word_embeddings": false,
147
+ "tokenizer_class": null,
148
+ "top_k": 50,
149
+ "top_p": 1.0,
150
+ "torch_dtype": "float32",
151
+ "torchscript": false,
152
+ "typical_p": 1.0,
153
+ "use_bfloat16": false,
154
+ "use_cache": true,
155
+ "vocab_size": 1088
156
+ },
157
+ "decoder_start_token_id": 1025,
158
+ "is_encoder_decoder": true,
159
+ "model_type": "parler_tts",
160
+ "pad_token_id": 1024,
161
+ "text_encoder": {
162
+ "_name_or_path": "google/flan-t5-base",
163
+ "add_cross_attention": false,
164
+ "architectures": [
165
+ "T5ForConditionalGeneration"
166
+ ],
167
+ "bad_words_ids": null,
168
+ "begin_suppress_tokens": null,
169
+ "bos_token_id": null,
170
+ "chunk_size_feed_forward": 0,
171
+ "classifier_dropout": 0.0,
172
+ "cross_attention_hidden_size": null,
173
+ "d_ff": 2048,
174
+ "d_kv": 64,
175
+ "d_model": 768,
176
+ "decoder_start_token_id": 0,
177
+ "dense_act_fn": "gelu_new",
178
+ "diversity_penalty": 0.0,
179
+ "do_sample": false,
180
+ "dropout_rate": 0.1,
181
+ "early_stopping": false,
182
+ "encoder_no_repeat_ngram_size": 0,
183
+ "eos_token_id": 1,
184
+ "exponential_decay_length_penalty": null,
185
+ "feed_forward_proj": "gated-gelu",
186
+ "finetuning_task": null,
187
+ "forced_bos_token_id": null,
188
+ "forced_eos_token_id": null,
189
+ "id2label": {
190
+ "0": "LABEL_0",
191
+ "1": "LABEL_1"
192
+ },
193
+ "initializer_factor": 1.0,
194
+ "is_decoder": false,
195
+ "is_encoder_decoder": true,
196
+ "is_gated_act": true,
197
+ "label2id": {
198
+ "LABEL_0": 0,
199
+ "LABEL_1": 1
200
+ },
201
+ "layer_norm_epsilon": 1e-06,
202
+ "length_penalty": 1.0,
203
+ "max_length": 20,
204
+ "min_length": 0,
205
+ "model_type": "t5",
206
+ "n_positions": 512,
207
+ "no_repeat_ngram_size": 0,
208
+ "num_beam_groups": 1,
209
+ "num_beams": 1,
210
+ "num_decoder_layers": 12,
211
+ "num_heads": 12,
212
+ "num_layers": 12,
213
+ "num_return_sequences": 1,
214
+ "output_attentions": false,
215
+ "output_hidden_states": false,
216
+ "output_past": true,
217
+ "output_scores": false,
218
+ "pad_token_id": 0,
219
+ "prefix": null,
220
+ "problem_type": null,
221
+ "pruned_heads": {},
222
+ "relative_attention_max_distance": 128,
223
+ "relative_attention_num_buckets": 32,
224
+ "remove_invalid_values": false,
225
+ "repetition_penalty": 1.0,
226
+ "return_dict": true,
227
+ "return_dict_in_generate": false,
228
+ "sep_token_id": null,
229
+ "suppress_tokens": null,
230
+ "task_specific_params": {
231
+ "summarization": {
232
+ "early_stopping": true,
233
+ "length_penalty": 2.0,
234
+ "max_length": 200,
235
+ "min_length": 30,
236
+ "no_repeat_ngram_size": 3,
237
+ "num_beams": 4,
238
+ "prefix": "summarize: "
239
+ },
240
+ "translation_en_to_de": {
241
+ "early_stopping": true,
242
+ "max_length": 300,
243
+ "num_beams": 4,
244
+ "prefix": "translate English to German: "
245
+ },
246
+ "translation_en_to_fr": {
247
+ "early_stopping": true,
248
+ "max_length": 300,
249
+ "num_beams": 4,
250
+ "prefix": "translate English to French: "
251
+ },
252
+ "translation_en_to_ro": {
253
+ "early_stopping": true,
254
+ "max_length": 300,
255
+ "num_beams": 4,
256
+ "prefix": "translate English to Romanian: "
257
+ }
258
+ },
259
+ "temperature": 1.0,
260
+ "tf_legacy_loss": false,
261
+ "tie_encoder_decoder": false,
262
+ "tie_word_embeddings": false,
263
+ "tokenizer_class": null,
264
+ "top_k": 50,
265
+ "top_p": 1.0,
266
+ "torch_dtype": null,
267
+ "torchscript": false,
268
+ "typical_p": 1.0,
269
+ "use_bfloat16": false,
270
+ "use_cache": true,
271
+ "vocab_size": 32128
272
+ },
273
+ "torch_dtype": "float16",
274
+ "transformers_version": "4.40.1",
275
+ "vocab_size": 32128
276
+ }
generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1025,
4
+ "decoder_start_token_id": 1025,
5
+ "do_sample": true,
6
+ "eos_token_id": 1024,
7
+ "guidance_scale": 1.0,
8
+ "max_length": 2580,
9
+ "min_new_tokens": 50,
10
+ "pad_token_id": 1024,
11
+ "transformers_version": "4.40.1"
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba39f9b0fc50d3a5446a6149d9969f2553370ec7946cb06a6753e8dcdcaf098f
3
+ size 1294160468