Model save
Browse files
README.md
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
base_model: nvidia/mit-b0
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: segformer-finetuned-biofilm_MRCNNv1_train
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# segformer-finetuned-biofilm_MRCNNv1_train
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.0003
|
19 |
+
- Mean Iou: 0.5000
|
20 |
+
- Mean Accuracy: 1.0000
|
21 |
+
- Overall Accuracy: 1.0000
|
22 |
+
- Accuracy Background: 1.0000
|
23 |
+
- Accuracy Biofilm: nan
|
24 |
+
- Iou Background: 1.0000
|
25 |
+
- Iou Biofilm: 0.0
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 6e-05
|
45 |
+
- train_batch_size: 8
|
46 |
+
- eval_batch_size: 8
|
47 |
+
- seed: 1337
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: polynomial
|
50 |
+
- training_steps: 10000
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Biofilm | Iou Background | Iou Biofilm |
|
55 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:----------------:|:--------------:|:-----------:|
|
56 |
+
| 0.262 | 1.0 | 136 | 0.0895 | 0.4984 | 0.9968 | 0.9968 | 0.9968 | nan | 0.9968 | 0.0 |
|
57 |
+
| 0.0826 | 2.0 | 272 | 0.0225 | 0.4995 | 0.9990 | 0.9990 | 0.9990 | nan | 0.9990 | 0.0 |
|
58 |
+
| 0.0225 | 3.0 | 408 | 0.0228 | 0.4985 | 0.9971 | 0.9971 | 0.9971 | nan | 0.9971 | 0.0 |
|
59 |
+
| 0.0141 | 4.0 | 544 | 0.0116 | 0.4997 | 0.9995 | 0.9995 | 0.9995 | nan | 0.9995 | 0.0 |
|
60 |
+
| 0.0093 | 5.0 | 680 | 0.0069 | 0.4996 | 0.9993 | 0.9993 | 0.9993 | nan | 0.9993 | 0.0 |
|
61 |
+
| 0.0054 | 6.0 | 816 | 0.0042 | 0.4999 | 0.9999 | 0.9999 | 0.9999 | nan | 0.9999 | 0.0 |
|
62 |
+
| 0.004 | 7.0 | 952 | 0.0030 | 0.5000 | 0.9999 | 0.9999 | 0.9999 | nan | 0.9999 | 0.0 |
|
63 |
+
| 0.0034 | 8.0 | 1088 | 0.0027 | 0.4999 | 0.9998 | 0.9998 | 0.9998 | nan | 0.9998 | 0.0 |
|
64 |
+
| 0.0024 | 9.0 | 1224 | 0.0021 | 0.4999 | 0.9999 | 0.9999 | 0.9999 | nan | 0.9999 | 0.0 |
|
65 |
+
| 0.0021 | 10.0 | 1360 | 0.0015 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
66 |
+
| 0.0017 | 11.0 | 1496 | 0.0019 | 0.4999 | 0.9999 | 0.9999 | 0.9999 | nan | 0.9999 | 0.0 |
|
67 |
+
| 0.0014 | 12.0 | 1632 | 0.0015 | 0.4999 | 0.9999 | 0.9999 | 0.9999 | nan | 0.9999 | 0.0 |
|
68 |
+
| 0.0012 | 13.0 | 1768 | 0.0010 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
69 |
+
| 0.0009 | 14.0 | 1904 | 0.0010 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
70 |
+
| 0.0008 | 15.0 | 2040 | 0.0009 | 0.5000 | 0.9999 | 0.9999 | 0.9999 | nan | 0.9999 | 0.0 |
|
71 |
+
| 0.0008 | 16.0 | 2176 | 0.0008 | 0.5000 | 0.9999 | 0.9999 | 0.9999 | nan | 0.9999 | 0.0 |
|
72 |
+
| 0.0006 | 17.0 | 2312 | 0.0009 | 0.4999 | 0.9999 | 0.9999 | 0.9999 | nan | 0.9999 | 0.0 |
|
73 |
+
| 0.0007 | 18.0 | 2448 | 0.0005 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
74 |
+
| 0.0006 | 19.0 | 2584 | 0.0010 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
75 |
+
| 0.0005 | 20.0 | 2720 | 0.0004 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
76 |
+
| 0.0004 | 21.0 | 2856 | 0.0005 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
77 |
+
| 0.0004 | 22.0 | 2992 | 0.0004 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
78 |
+
| 0.0003 | 23.0 | 3128 | 0.0003 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
79 |
+
| 0.0004 | 24.0 | 3264 | 0.0003 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
80 |
+
| 0.0003 | 25.0 | 3400 | 0.0003 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
81 |
+
| 0.0002 | 26.0 | 3536 | 0.0003 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
82 |
+
| 0.0003 | 27.0 | 3672 | 0.0002 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
83 |
+
| 0.0002 | 28.0 | 3808 | 0.0003 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
84 |
+
| 0.0002 | 29.0 | 3944 | 0.0003 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
85 |
+
| 0.0002 | 30.0 | 4080 | 0.0002 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
86 |
+
| 0.0002 | 31.0 | 4216 | 0.0002 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
87 |
+
| 0.0001 | 32.0 | 4352 | 0.0002 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
88 |
+
| 0.0002 | 33.0 | 4488 | 0.0001 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
89 |
+
| 0.0001 | 34.0 | 4624 | 0.0002 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
90 |
+
| 0.0001 | 35.0 | 4760 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | nan | 1.0 | nan |
|
91 |
+
| 0.0002 | 36.0 | 4896 | 0.0001 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
92 |
+
| 0.0001 | 37.0 | 5032 | 0.0001 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
93 |
+
| 0.0001 | 38.0 | 5168 | 0.0001 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
94 |
+
| 0.0001 | 39.0 | 5304 | 0.0001 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
95 |
+
| 0.0001 | 40.0 | 5440 | 0.0001 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
96 |
+
| 0.0001 | 41.0 | 5576 | 0.0001 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
97 |
+
| 0.0001 | 42.0 | 5712 | 0.0001 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
98 |
+
| 0.0001 | 43.0 | 5848 | 0.0001 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
99 |
+
| 0.0001 | 44.0 | 5984 | 0.0001 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
100 |
+
| 0.0001 | 45.0 | 6120 | 0.0001 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
101 |
+
| 0.0001 | 46.0 | 6256 | 0.0001 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
102 |
+
| 0.0001 | 47.0 | 6392 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 | nan | 1.0 | nan |
|
103 |
+
| 0.0001 | 48.0 | 6528 | 0.0000 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
104 |
+
| 0.0001 | 49.0 | 6664 | 0.0001 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
105 |
+
| 0.0001 | 50.0 | 6800 | 0.0001 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
106 |
+
| 0.0001 | 51.0 | 6936 | 0.0001 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
107 |
+
| 0.0001 | 52.0 | 7072 | 0.0001 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
108 |
+
| 0.0001 | 53.0 | 7208 | 0.0001 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
109 |
+
| 0.0001 | 54.0 | 7344 | 0.0002 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
110 |
+
| 0.0001 | 55.0 | 7480 | 0.0001 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
111 |
+
| 0.0001 | 56.0 | 7616 | 0.0001 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
112 |
+
| 0.0001 | 57.0 | 7752 | 0.0003 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
113 |
+
| 0.0001 | 58.0 | 7888 | 0.0002 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
114 |
+
| 0.0001 | 59.0 | 8024 | 0.0004 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
115 |
+
| 0.0001 | 60.0 | 8160 | 0.0002 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
116 |
+
| 0.0001 | 61.0 | 8296 | 0.0002 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
117 |
+
| 0.0001 | 62.0 | 8432 | 0.0002 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
118 |
+
| 0.0001 | 63.0 | 8568 | 0.0003 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
119 |
+
| 0.0001 | 64.0 | 8704 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 | nan | 1.0 | nan |
|
120 |
+
| 0.0001 | 65.0 | 8840 | 0.0003 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
121 |
+
| 0.0001 | 66.0 | 8976 | 0.0003 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
122 |
+
| 0.0001 | 67.0 | 9112 | 0.0003 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
123 |
+
| 0.0001 | 68.0 | 9248 | 0.0003 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
124 |
+
| 0.0001 | 69.0 | 9384 | 0.0003 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
125 |
+
| 0.0001 | 70.0 | 9520 | 0.0003 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
126 |
+
| 0.0001 | 71.0 | 9656 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 | nan | 1.0 | nan |
|
127 |
+
| 0.0001 | 72.0 | 9792 | 0.0003 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
128 |
+
| 0.0001 | 73.0 | 9928 | 0.0003 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
129 |
+
| 0.0001 | 73.53 | 10000 | 0.0003 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
|
130 |
+
|
131 |
+
|
132 |
+
### Framework versions
|
133 |
+
|
134 |
+
- Transformers 4.38.0.dev0
|
135 |
+
- Pytorch 2.0.0+cu117
|
136 |
+
- Datasets 2.14.4
|
137 |
+
- Tokenizers 0.15.1
|