Model save
Browse files
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
base_model: nvidia/mit-b0
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: segformer-finetuned-biofilm_MRCNNv1_halfjoin
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# segformer-finetuned-biofilm_MRCNNv1_halfjoin
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.0208
|
19 |
+
- Mean Iou: 0.4961
|
20 |
+
- Mean Accuracy: 0.9923
|
21 |
+
- Overall Accuracy: 0.9923
|
22 |
+
- Accuracy Background: 0.9923
|
23 |
+
- Accuracy Biofilm: nan
|
24 |
+
- Iou Background: 0.9923
|
25 |
+
- Iou Biofilm: 0.0
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 6e-05
|
45 |
+
- train_batch_size: 8
|
46 |
+
- eval_batch_size: 8
|
47 |
+
- seed: 1337
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: polynomial
|
50 |
+
- training_steps: 10000
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Biofilm | Iou Background | Iou Biofilm |
|
55 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:----------------:|:--------------:|:-----------:|
|
56 |
+
| 0.0713 | 1.0 | 478 | 0.0381 | 0.4953 | 0.9906 | 0.9906 | 0.9906 | nan | 0.9906 | 0.0 |
|
57 |
+
| 0.044 | 2.0 | 956 | 0.0202 | 0.4975 | 0.9949 | 0.9949 | 0.9949 | nan | 0.9949 | 0.0 |
|
58 |
+
| 0.041 | 3.0 | 1434 | 0.0181 | 0.4972 | 0.9945 | 0.9945 | 0.9945 | nan | 0.9945 | 0.0 |
|
59 |
+
| 0.0361 | 4.0 | 1912 | 0.0203 | 0.4963 | 0.9926 | 0.9926 | 0.9926 | nan | 0.9926 | 0.0 |
|
60 |
+
| 0.0357 | 5.0 | 2390 | 0.0163 | 0.4971 | 0.9942 | 0.9942 | 0.9942 | nan | 0.9942 | 0.0 |
|
61 |
+
| 0.0336 | 6.0 | 2868 | 0.0340 | 0.4958 | 0.9915 | 0.9915 | 0.9915 | nan | 0.9915 | 0.0 |
|
62 |
+
| 0.0295 | 7.0 | 3346 | 0.0126 | 0.4978 | 0.9955 | 0.9955 | 0.9955 | nan | 0.9955 | 0.0 |
|
63 |
+
| 0.0251 | 8.0 | 3824 | 0.0220 | 0.4957 | 0.9915 | 0.9915 | 0.9915 | nan | 0.9915 | 0.0 |
|
64 |
+
| 0.0265 | 9.0 | 4302 | 0.0182 | 0.4966 | 0.9933 | 0.9933 | 0.9933 | nan | 0.9933 | 0.0 |
|
65 |
+
| 0.0238 | 10.0 | 4780 | 0.0155 | 0.4970 | 0.9940 | 0.9940 | 0.9940 | nan | 0.9940 | 0.0 |
|
66 |
+
| 0.0258 | 11.0 | 5258 | 0.0181 | 0.4966 | 0.9931 | 0.9931 | 0.9931 | nan | 0.9931 | 0.0 |
|
67 |
+
| 0.0264 | 12.0 | 5736 | 0.0179 | 0.4969 | 0.9938 | 0.9938 | 0.9938 | nan | 0.9938 | 0.0 |
|
68 |
+
| 0.0265 | 13.0 | 6214 | 0.0222 | 0.4959 | 0.9917 | 0.9917 | 0.9917 | nan | 0.9917 | 0.0 |
|
69 |
+
| 0.0219 | 14.0 | 6692 | 0.0200 | 0.4962 | 0.9925 | 0.9925 | 0.9925 | nan | 0.9925 | 0.0 |
|
70 |
+
| 0.0213 | 15.0 | 7170 | 0.0234 | 0.4958 | 0.9916 | 0.9916 | 0.9916 | nan | 0.9916 | 0.0 |
|
71 |
+
| 0.0192 | 16.0 | 7648 | 0.0199 | 0.4961 | 0.9922 | 0.9922 | 0.9922 | nan | 0.9922 | 0.0 |
|
72 |
+
| 0.0232 | 17.0 | 8126 | 0.0208 | 0.4961 | 0.9923 | 0.9923 | 0.9923 | nan | 0.9923 | 0.0 |
|
73 |
+
| 0.0219 | 18.0 | 8604 | 0.0245 | 0.4955 | 0.9909 | 0.9909 | 0.9909 | nan | 0.9909 | 0.0 |
|
74 |
+
| 0.0201 | 19.0 | 9082 | 0.0211 | 0.4961 | 0.9922 | 0.9922 | 0.9922 | nan | 0.9922 | 0.0 |
|
75 |
+
| 0.0192 | 20.0 | 9560 | 0.0207 | 0.4962 | 0.9923 | 0.9923 | 0.9923 | nan | 0.9923 | 0.0 |
|
76 |
+
| 0.0175 | 20.92 | 10000 | 0.0208 | 0.4961 | 0.9923 | 0.9923 | 0.9923 | nan | 0.9923 | 0.0 |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.38.0.dev0
|
82 |
+
- Pytorch 2.0.0+cu117
|
83 |
+
- Datasets 2.14.4
|
84 |
+
- Tokenizers 0.15.1
|