heroza commited on
Commit
da2ec7a
1 Parent(s): f680259

Model save

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: nvidia/mit-b0
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: segformer-finetuned-biofilm_MRCNNv1_halfjoin
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # segformer-finetuned-biofilm_MRCNNv1_halfjoin
15
+
16
+ This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.0208
19
+ - Mean Iou: 0.4961
20
+ - Mean Accuracy: 0.9923
21
+ - Overall Accuracy: 0.9923
22
+ - Accuracy Background: 0.9923
23
+ - Accuracy Biofilm: nan
24
+ - Iou Background: 0.9923
25
+ - Iou Biofilm: 0.0
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 6e-05
45
+ - train_batch_size: 8
46
+ - eval_batch_size: 8
47
+ - seed: 1337
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: polynomial
50
+ - training_steps: 10000
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Biofilm | Iou Background | Iou Biofilm |
55
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:----------------:|:--------------:|:-----------:|
56
+ | 0.0713 | 1.0 | 478 | 0.0381 | 0.4953 | 0.9906 | 0.9906 | 0.9906 | nan | 0.9906 | 0.0 |
57
+ | 0.044 | 2.0 | 956 | 0.0202 | 0.4975 | 0.9949 | 0.9949 | 0.9949 | nan | 0.9949 | 0.0 |
58
+ | 0.041 | 3.0 | 1434 | 0.0181 | 0.4972 | 0.9945 | 0.9945 | 0.9945 | nan | 0.9945 | 0.0 |
59
+ | 0.0361 | 4.0 | 1912 | 0.0203 | 0.4963 | 0.9926 | 0.9926 | 0.9926 | nan | 0.9926 | 0.0 |
60
+ | 0.0357 | 5.0 | 2390 | 0.0163 | 0.4971 | 0.9942 | 0.9942 | 0.9942 | nan | 0.9942 | 0.0 |
61
+ | 0.0336 | 6.0 | 2868 | 0.0340 | 0.4958 | 0.9915 | 0.9915 | 0.9915 | nan | 0.9915 | 0.0 |
62
+ | 0.0295 | 7.0 | 3346 | 0.0126 | 0.4978 | 0.9955 | 0.9955 | 0.9955 | nan | 0.9955 | 0.0 |
63
+ | 0.0251 | 8.0 | 3824 | 0.0220 | 0.4957 | 0.9915 | 0.9915 | 0.9915 | nan | 0.9915 | 0.0 |
64
+ | 0.0265 | 9.0 | 4302 | 0.0182 | 0.4966 | 0.9933 | 0.9933 | 0.9933 | nan | 0.9933 | 0.0 |
65
+ | 0.0238 | 10.0 | 4780 | 0.0155 | 0.4970 | 0.9940 | 0.9940 | 0.9940 | nan | 0.9940 | 0.0 |
66
+ | 0.0258 | 11.0 | 5258 | 0.0181 | 0.4966 | 0.9931 | 0.9931 | 0.9931 | nan | 0.9931 | 0.0 |
67
+ | 0.0264 | 12.0 | 5736 | 0.0179 | 0.4969 | 0.9938 | 0.9938 | 0.9938 | nan | 0.9938 | 0.0 |
68
+ | 0.0265 | 13.0 | 6214 | 0.0222 | 0.4959 | 0.9917 | 0.9917 | 0.9917 | nan | 0.9917 | 0.0 |
69
+ | 0.0219 | 14.0 | 6692 | 0.0200 | 0.4962 | 0.9925 | 0.9925 | 0.9925 | nan | 0.9925 | 0.0 |
70
+ | 0.0213 | 15.0 | 7170 | 0.0234 | 0.4958 | 0.9916 | 0.9916 | 0.9916 | nan | 0.9916 | 0.0 |
71
+ | 0.0192 | 16.0 | 7648 | 0.0199 | 0.4961 | 0.9922 | 0.9922 | 0.9922 | nan | 0.9922 | 0.0 |
72
+ | 0.0232 | 17.0 | 8126 | 0.0208 | 0.4961 | 0.9923 | 0.9923 | 0.9923 | nan | 0.9923 | 0.0 |
73
+ | 0.0219 | 18.0 | 8604 | 0.0245 | 0.4955 | 0.9909 | 0.9909 | 0.9909 | nan | 0.9909 | 0.0 |
74
+ | 0.0201 | 19.0 | 9082 | 0.0211 | 0.4961 | 0.9922 | 0.9922 | 0.9922 | nan | 0.9922 | 0.0 |
75
+ | 0.0192 | 20.0 | 9560 | 0.0207 | 0.4962 | 0.9923 | 0.9923 | 0.9923 | nan | 0.9923 | 0.0 |
76
+ | 0.0175 | 20.92 | 10000 | 0.0208 | 0.4961 | 0.9923 | 0.9923 | 0.9923 | nan | 0.9923 | 0.0 |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - Transformers 4.38.0.dev0
82
+ - Pytorch 2.0.0+cu117
83
+ - Datasets 2.14.4
84
+ - Tokenizers 0.15.1