Commit
·
312cf29
1
Parent(s):
c7a0084
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- crows_pairs
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: xlnet-base-cased_crows_pairs_finetuned
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Text Classification
|
14 |
+
type: text-classification
|
15 |
+
dataset:
|
16 |
+
name: crows_pairs
|
17 |
+
type: crows_pairs
|
18 |
+
config: crows_pairs
|
19 |
+
split: test
|
20 |
+
args: crows_pairs
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.49337748344370863
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# xlnet-base-cased_crows_pairs_finetuned
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the crows_pairs dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.7205
|
35 |
+
- Accuracy: 0.4934
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 1e-05
|
55 |
+
- train_batch_size: 128
|
56 |
+
- eval_batch_size: 64
|
57 |
+
- seed: 42
|
58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- num_epochs: 15
|
61 |
+
|
62 |
+
### Training results
|
63 |
+
|
64 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
65 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
66 |
+
| No log | 0.5 | 5 | 0.7872 | 0.5099 |
|
67 |
+
| No log | 1.0 | 10 | 0.7224 | 0.4868 |
|
68 |
+
| No log | 1.5 | 15 | 0.7039 | 0.5464 |
|
69 |
+
| No log | 2.0 | 20 | 0.6976 | 0.5 |
|
70 |
+
| No log | 2.5 | 25 | 0.7210 | 0.4702 |
|
71 |
+
| No log | 3.0 | 30 | 0.6963 | 0.5099 |
|
72 |
+
| No log | 3.5 | 35 | 0.6971 | 0.5166 |
|
73 |
+
| No log | 4.0 | 40 | 0.7045 | 0.4735 |
|
74 |
+
| No log | 4.5 | 45 | 0.7228 | 0.4768 |
|
75 |
+
| No log | 5.0 | 50 | 0.7042 | 0.4702 |
|
76 |
+
| No log | 5.5 | 55 | 0.7013 | 0.4834 |
|
77 |
+
| No log | 6.0 | 60 | 0.7056 | 0.4768 |
|
78 |
+
| No log | 6.5 | 65 | 0.7086 | 0.4702 |
|
79 |
+
| No log | 7.0 | 70 | 0.7027 | 0.4834 |
|
80 |
+
| No log | 7.5 | 75 | 0.7137 | 0.4834 |
|
81 |
+
| No log | 8.0 | 80 | 0.7100 | 0.4735 |
|
82 |
+
| No log | 8.5 | 85 | 0.7083 | 0.4934 |
|
83 |
+
| No log | 9.0 | 90 | 0.7067 | 0.4934 |
|
84 |
+
| No log | 9.5 | 95 | 0.7052 | 0.4768 |
|
85 |
+
| No log | 10.0 | 100 | 0.7078 | 0.4669 |
|
86 |
+
| No log | 10.5 | 105 | 0.7147 | 0.4768 |
|
87 |
+
| No log | 11.0 | 110 | 0.7200 | 0.4834 |
|
88 |
+
| No log | 11.5 | 115 | 0.7164 | 0.4570 |
|
89 |
+
| No log | 12.0 | 120 | 0.7146 | 0.4669 |
|
90 |
+
| No log | 12.5 | 125 | 0.7096 | 0.4934 |
|
91 |
+
| No log | 13.0 | 130 | 0.7138 | 0.4702 |
|
92 |
+
| No log | 13.5 | 135 | 0.7201 | 0.4768 |
|
93 |
+
| No log | 14.0 | 140 | 0.7236 | 0.4967 |
|
94 |
+
| No log | 14.5 | 145 | 0.7216 | 0.4967 |
|
95 |
+
| No log | 15.0 | 150 | 0.7205 | 0.4934 |
|
96 |
+
|
97 |
+
|
98 |
+
### Framework versions
|
99 |
+
|
100 |
+
- Transformers 4.26.1
|
101 |
+
- Pytorch 1.13.1
|
102 |
+
- Datasets 2.10.1
|
103 |
+
- Tokenizers 0.13.2
|