helpingstar commited on
Commit
d11062a
·
1 Parent(s): 69eb73b

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1768.53 +/- 142.09
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6ed32a062001fb404dfb61dc5fa2ef82b36c243db6f14f48bbb7d621f58dccb
3
+ size 129265
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa4dc8b4c10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa4dc8b4ca0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa4dc8b4d30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa4dc8b4dc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fa4dc8b4e50>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fa4dc8b4ee0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa4dc8b4f70>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa4dc8b7040>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fa4dc8b70d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa4dc8b7160>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa4dc8b71f0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa4dc8b7280>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fa4dc8b8140>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1680054895210465661,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAI/JaL9itDm/x+cCP4j+uT/x2RG/uypiP6dLvb7dBh0/5iRRP0C89j72cyO/T0lrPheUJr/zbtm/IWQAP4Bpjj8xnFo/nJABwL6xIL7h5K895/5jv1YN8L7qh5K/BmEEP3YMhj8xmwXAPVjfPv5Ol7+5882+NX1WP7hvHD4LrZA/snSWvucCwT+U3y2+Y0gdv5Q5hT+7kbS+cVFuPSrWG79bb7S/ZfcAP7M4jT1cMzXABfKLPQu+TT6ciyI/pz44v/zgdL+WLHw/q60uvy8wyz92DIY/MZsFwD1Y3z7+Tpe/nsO8v4k7dr/d/a0+RVIovHpCij+r2MA+IdrQvgRNlD10gGU/PWkfvpRHuL/HZza+mXu4vn2DuD7P8HI/UfS3PNkgQb5Kp8Y++60fP8A4sL6SDaK+M3G/vs3+d767Sga90nJ0vw5C9T49WN8+Z5BYPwJg4b70QQc/xizfPjMOpD8ubII/mPaVv08QT78E8zg+Xu5xPuxEZL8Khum+3hovQDgBkb6kt4C/OZgvP8tCfr+GFaM/qw5TvxUsOb9tRCA/Mk+Fv9CcBj8GRjy+OtMdwNJydL8OQvU+PVjfPv5Ol7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABwSfG1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACANwrjvQAAAACGyNy/AAAAAJsi0L0AAAAAuiv8PwAAAAAPefe9AAAAANgO7j8AAAAADgQAvQAAAAAQawDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYn0pNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCE9CT4AAAAASIrqvwAAAADC6Fo9AAAAAH4e2T8AAAAABDKtPQAAAAAi0tw/AAAAAD2L1r0AAAAAKwXbvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArn87MAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBOkyK9AAAAAPul+r8AAAAA7epJvQAAAAB4KOI/AAAAAC+68LsAAAAABzDhPwAAAACFsCS8AAAAACLr7L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABxUym0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAUOe7PQAAAABQ2vu/AAAAAIMNkrwAAAAA2wX8PwAAAADJqjo9AAAAANDV6z8AAAAASY9gvQAAAABqdeC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJclH4pMHr2MAWyUTegDjAF0lEdAp4LaQDFId3V9lChoBkdAmSDGDHwPRWgHTegDaAhHQKeHQIgvDgt1fZQoaAZHQJeAMy1uzhRoB03oA2gIR0CniHwRGtp3dX2UKGgGR0CYR/HyEtdzaAdN6ANoCEdAp4lAD3dsSHV9lChoBkdAk4kd8Z1mrmgHTegDaAhHQKePGjIJZ4h1fZQoaAZHQJGgujGkvbpoB03oA2gIR0Cnk4h2fTTfdX2UKGgGR0CVi26Skj5caAdN6ANoCEdAp5TDUutfX3V9lChoBkdAlYxQudwvQGgHTegDaAhHQKeVfbuc+aB1fZQoaAZHQJgAm1LJ0XBoB03oA2gIR0Cnm2CTdLxqdX2UKGgGR0CY67PWQOnVaAdN6ANoCEdAp5+hV4oqkXV9lChoBkdAl4/3VbzK92gHTegDaAhHQKeg5ZIxxkx1fZQoaAZHQJyjBI1+AmRoB03oA2gIR0CnoaZVGTcJdX2UKGgGR0CZRttBfKISaAdN6ANoCEdAp6eybWmP53V9lChoBkdAm8uJ7sv7FmgHTegDaAhHQKerynDziCJ1fZQoaAZHQJV6pszl90BoB03oA2gIR0CnrO3UQTVUdX2UKGgGR0CcY414Pf8/aAdN6ANoCEdAp62dNzr/sHV9lChoBkdAmDhQV0tAcGgHTegDaAhHQKezTIBBAwB1fZQoaAZHQJsy4gfU4JhoB03oA2gIR0Cnt2GBe5WjdX2UKGgGR0CbWCtg8bJfaAdN6ANoCEdAp7iZ+H8CP3V9lChoBkdAmjmRpYcNpmgHTegDaAhHQKe5V60pmVZ1fZQoaAZHQJWu9+UhV2loB03oA2gIR0Cnv2X3xnWbdX2UKGgGR0CXoTWD6FdtaAdN6ANoCEdAp8N+xB3RonV9lChoBkdAl+2Grn1WbWgHTegDaAhHQKfEo7GNrCZ1fZQoaAZHQJWoZn/T9bZoB03oA2gIR0CnxVb+kxh2dX2UKGgGR0CXfPu3+dbxaAdN6ANoCEdAp8sqLdepoHV9lChoBkdAmc1HPNVzZGgHTegDaAhHQKfPUTURWcV1fZQoaAZHQJOGJg8bJfZoB03oA2gIR0Cn0HaDXe3ydX2UKGgGR0CWwlfO2RaHaAdN6ANoCEdAp9Elbor4FnV9lChoBkdAm8nerZJ04mgHTegDaAhHQKfXDK15Sm91fZQoaAZHQJtl9mwqy4ZoB03oA2gIR0Cn2xaVUuL8dX2UKGgGR0CgM/iVKPGRaAdN6ANoCEdAp9w8O7QLNXV9lChoBkdAnM1htUGVzWgHTegDaAhHQKfc6/t6X0J1fZQoaAZHQJOabCk43m5oB03oA2gIR0Cn4tiXQdCFdX2UKGgGR0Cbd8WHUMG5aAdN6ANoCEdAp+brZBcAznV9lChoBkdAmwzIrWiDd2gHTegDaAhHQKfoEX3xnWd1fZQoaAZHQJRrpaKUFB9oB03oA2gIR0Cn6MTV2A5JdX2UKGgGR0CcANhMJx//aAdN6ANoCEdAp+62LtNSInV9lChoBkdAnzRMlkYoAmgHTegDaAhHQKfy7Pqs2eh1fZQoaAZHQJi0inMt9QZoB03oA2gIR0Cn9BP/JeVtdX2UKGgGR0CWaEr08NhFaAdN6ANoCEdAp/TGEh7mdXV9lChoBkdAmgttC/oJRmgHTegDaAhHQKf6ef4h2W91fZQoaAZHQJTeVB+nZTRoB03oA2gIR0Cn/pNITXardX2UKGgGR0CdRH+EAYHgaAdN6ANoCEdAp//FVrAP/nV9lChoBkdAmr7sMy8BdWgHTegDaAhHQKgAeBsANod1fZQoaAZHQJnsBZV4oqloB03oA2gIR0CoBtbF85S4dX2UKGgGR0CZdURPoFFEaAdN6ANoCEdAqAu7Ikqto3V9lChoBkdAmyuR7zCk42gHTegDaAhHQKgM99gnc+J1fZQoaAZHQJ2b5awD/2loB03oA2gIR0CoDbFMIu5CdX2UKGgGR0CYRvXb/Ot5aAdN6ANoCEdAqBN6VdHDrXV9lChoBkdAleB4bsF+u2gHTegDaAhHQKgXm+HJtBR1fZQoaAZHQJrO5UKiPABoB03oA2gIR0CoGMPnKW9ldX2UKGgGR0CYnvfDUExJaAdN6ANoCEdAqBl2sijcmHV9lChoBkdAldDlVDKHPGgHTegDaAhHQKgfPkBjnV51fZQoaAZHQJuedGRV6u5oB03oA2gIR0CoJCS0KJEZdX2UKGgGR0CZ3wJiRW92aAdN6ANoCEdAqCW+lsP8RHV9lChoBkdAm7IiExqO92gHTegDaAhHQKgmtZ0Syt51fZQoaAZHQJh/W8/UvwpoB03oA2gIR0CoLM8NpdrwdX2UKGgGR0CfVc3tKIznaAdN6ANoCEdAqDDxXGOuJXV9lChoBkdAnUvNt/FzdWgHTegDaAhHQKgyFAOavzR1fZQoaAZHQJx71B5X2dxoB03oA2gIR0CoMsShJyyVdX2UKGgGR0CcJe1W8yvcaAdN6ANoCEdAqDh6L/CIlHV9lChoBkdAmgSLPyCnP2gHTegDaAhHQKg8lF+/gzh1fZQoaAZHQJpcOn5zo2ZoB03oA2gIR0CoPcsjeKsNdX2UKGgGR0CaR9wu/UONaAdN6ANoCEdAqD6EdV/+bXV9lChoBkdAlW84FaB7NWgHTegDaAhHQKhEbowmE5B1fZQoaAZHQJ+O0Szw+dNoB03oA2gIR0CoSIiHZbpvdX2UKGgGR0Cario7muDBaAdN6ANoCEdAqEmxPCVKPHV9lChoBkdAnXldDhLoOmgHTegDaAhHQKhKYyIpH7R1fZQoaAZHQJ1C8Qe3hGZoB03oA2gIR0CoUDY7Rv3rdX2UKGgGR0CgO63aBZp0aAdN6ANoCEdAqFRKnk1dgXV9lChoBkdAm+EKnvUjLWgHTegDaAhHQKhVarDIikh1fZQoaAZHQJ0zE/zJ6ppoB03oA2gIR0CoVh1RtP56dX2UKGgGR0CXjC48EFGHaAdN6ANoCEdAqFwizZ6D5HV9lChoBkdAlpjff4yoGmgHTegDaAhHQKhgKs6JZW91fZQoaAZHQJxIj+OwPiFoB03oA2gIR0CoYU/yf+S9dX2UKGgGR0CdZEpON5t4aAdN6ANoCEdAqGIARTS9d3V9lChoBkdAmwyDUutfX2gHTegDaAhHQKhnt1dxAB11fZQoaAZHQJVQASlFc6hoB03oA2gIR0Coa8q6FuejdX2UKGgGR0CZiOCN0eU7aAdN6ANoCEdAqGzv752yLXV9lChoBkdAnDXgIldC3WgHTegDaAhHQKhtn+c6Nl11fZQoaAZHQKA/exM36yloB03oA2gIR0Coc3MSbpeNdX2UKGgGR0CfQ0qn3ta7aAdN6ANoCEdAqHfOGKyfMHV9lChoBkdAnpRCpvP1MGgHTegDaAhHQKh4+XSBshx1fZQoaAZHQJ4P/RPXTVloB03oA2gIR0CoebGp2ll9dX2UKGgGR0CdmP7btZ3caAdN6ANoCEdAqH9zCFbml3V9lChoBkdAmwVnyiEg4mgHTegDaAhHQKiDddIoVmB1fZQoaAZHQJwMw2bXpW5oB03oA2gIR0CohJW6K+BZdX2UKGgGR0CdtSDZDiOvaAdN6ANoCEdAqIVBiy6cy3V9lChoBkdAmhuBLsa86GgHTegDaAhHQKiK8JMQEp11fZQoaAZHQJzZtkhA4XJoB03oA2gIR0CojyTVlPJrdX2UKGgGR0CcJoIVM23saAdN6ANoCEdAqJBVI065oXV9lChoBkdAnjMeMZP2wmgHTegDaAhHQKiRBl2eQMh1fZQoaAZHQJqDbN5dGAloB03oA2gIR0ColqJPhybQdX2UKGgGR0CczHvr4WUKaAdN6ANoCEdAqJrCGHpKSXV9lChoBkdAmmhohllK9WgHTegDaAhHQKib40DU3GZ1fZQoaAZHQJutrOW0JF9oB03oA2gIR0ConI8TSLIgdX2UKGgGR0Ca6reCCjDbaAdN6ANoCEdAqKIYtHxz73V9lChoBkdAm6qo46wMY2gHTegDaAhHQKimQwIMSbp1fZQoaAZHQKAFveKsMiNoB03oA2gIR0Cop23FtKqXdX2UKGgGR0CXqJTKDCgsaAdN6ANoCEdAqKgha7mMfnVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5507fd36e93b658b24b4128c3c04259b50baa8f71597b15251c8500f6af63178
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afc02578f9813c602babc6230f4fae06093edaa1c2c3b07dd835e371a76374b5
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa4dc8b4c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa4dc8b4ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa4dc8b4d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa4dc8b4dc0>", "_build": "<function ActorCriticPolicy._build at 0x7fa4dc8b4e50>", "forward": "<function ActorCriticPolicy.forward at 0x7fa4dc8b4ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa4dc8b4f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa4dc8b7040>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa4dc8b70d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa4dc8b7160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa4dc8b71f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa4dc8b7280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa4dc8b8140>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680054895210465661, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAI/JaL9itDm/x+cCP4j+uT/x2RG/uypiP6dLvb7dBh0/5iRRP0C89j72cyO/T0lrPheUJr/zbtm/IWQAP4Bpjj8xnFo/nJABwL6xIL7h5K895/5jv1YN8L7qh5K/BmEEP3YMhj8xmwXAPVjfPv5Ol7+5882+NX1WP7hvHD4LrZA/snSWvucCwT+U3y2+Y0gdv5Q5hT+7kbS+cVFuPSrWG79bb7S/ZfcAP7M4jT1cMzXABfKLPQu+TT6ciyI/pz44v/zgdL+WLHw/q60uvy8wyz92DIY/MZsFwD1Y3z7+Tpe/nsO8v4k7dr/d/a0+RVIovHpCij+r2MA+IdrQvgRNlD10gGU/PWkfvpRHuL/HZza+mXu4vn2DuD7P8HI/UfS3PNkgQb5Kp8Y++60fP8A4sL6SDaK+M3G/vs3+d767Sga90nJ0vw5C9T49WN8+Z5BYPwJg4b70QQc/xizfPjMOpD8ubII/mPaVv08QT78E8zg+Xu5xPuxEZL8Khum+3hovQDgBkb6kt4C/OZgvP8tCfr+GFaM/qw5TvxUsOb9tRCA/Mk+Fv9CcBj8GRjy+OtMdwNJydL8OQvU+PVjfPv5Ol7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABwSfG1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACANwrjvQAAAACGyNy/AAAAAJsi0L0AAAAAuiv8PwAAAAAPefe9AAAAANgO7j8AAAAADgQAvQAAAAAQawDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYn0pNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCE9CT4AAAAASIrqvwAAAADC6Fo9AAAAAH4e2T8AAAAABDKtPQAAAAAi0tw/AAAAAD2L1r0AAAAAKwXbvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArn87MAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBOkyK9AAAAAPul+r8AAAAA7epJvQAAAAB4KOI/AAAAAC+68LsAAAAABzDhPwAAAACFsCS8AAAAACLr7L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABxUym0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAUOe7PQAAAABQ2vu/AAAAAIMNkrwAAAAA2wX8PwAAAADJqjo9AAAAANDV6z8AAAAASY9gvQAAAABqdeC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJclH4pMHr2MAWyUTegDjAF0lEdAp4LaQDFId3V9lChoBkdAmSDGDHwPRWgHTegDaAhHQKeHQIgvDgt1fZQoaAZHQJeAMy1uzhRoB03oA2gIR0CniHwRGtp3dX2UKGgGR0CYR/HyEtdzaAdN6ANoCEdAp4lAD3dsSHV9lChoBkdAk4kd8Z1mrmgHTegDaAhHQKePGjIJZ4h1fZQoaAZHQJGgujGkvbpoB03oA2gIR0Cnk4h2fTTfdX2UKGgGR0CVi26Skj5caAdN6ANoCEdAp5TDUutfX3V9lChoBkdAlYxQudwvQGgHTegDaAhHQKeVfbuc+aB1fZQoaAZHQJgAm1LJ0XBoB03oA2gIR0Cnm2CTdLxqdX2UKGgGR0CY67PWQOnVaAdN6ANoCEdAp5+hV4oqkXV9lChoBkdAl4/3VbzK92gHTegDaAhHQKeg5ZIxxkx1fZQoaAZHQJyjBI1+AmRoB03oA2gIR0CnoaZVGTcJdX2UKGgGR0CZRttBfKISaAdN6ANoCEdAp6eybWmP53V9lChoBkdAm8uJ7sv7FmgHTegDaAhHQKerynDziCJ1fZQoaAZHQJV6pszl90BoB03oA2gIR0CnrO3UQTVUdX2UKGgGR0CcY414Pf8/aAdN6ANoCEdAp62dNzr/sHV9lChoBkdAmDhQV0tAcGgHTegDaAhHQKezTIBBAwB1fZQoaAZHQJsy4gfU4JhoB03oA2gIR0Cnt2GBe5WjdX2UKGgGR0CbWCtg8bJfaAdN6ANoCEdAp7iZ+H8CP3V9lChoBkdAmjmRpYcNpmgHTegDaAhHQKe5V60pmVZ1fZQoaAZHQJWu9+UhV2loB03oA2gIR0Cnv2X3xnWbdX2UKGgGR0CXoTWD6FdtaAdN6ANoCEdAp8N+xB3RonV9lChoBkdAl+2Grn1WbWgHTegDaAhHQKfEo7GNrCZ1fZQoaAZHQJWoZn/T9bZoB03oA2gIR0CnxVb+kxh2dX2UKGgGR0CXfPu3+dbxaAdN6ANoCEdAp8sqLdepoHV9lChoBkdAmc1HPNVzZGgHTegDaAhHQKfPUTURWcV1fZQoaAZHQJOGJg8bJfZoB03oA2gIR0Cn0HaDXe3ydX2UKGgGR0CWwlfO2RaHaAdN6ANoCEdAp9Elbor4FnV9lChoBkdAm8nerZJ04mgHTegDaAhHQKfXDK15Sm91fZQoaAZHQJtl9mwqy4ZoB03oA2gIR0Cn2xaVUuL8dX2UKGgGR0CgM/iVKPGRaAdN6ANoCEdAp9w8O7QLNXV9lChoBkdAnM1htUGVzWgHTegDaAhHQKfc6/t6X0J1fZQoaAZHQJOabCk43m5oB03oA2gIR0Cn4tiXQdCFdX2UKGgGR0Cbd8WHUMG5aAdN6ANoCEdAp+brZBcAznV9lChoBkdAmwzIrWiDd2gHTegDaAhHQKfoEX3xnWd1fZQoaAZHQJRrpaKUFB9oB03oA2gIR0Cn6MTV2A5JdX2UKGgGR0CcANhMJx//aAdN6ANoCEdAp+62LtNSInV9lChoBkdAnzRMlkYoAmgHTegDaAhHQKfy7Pqs2eh1fZQoaAZHQJi0inMt9QZoB03oA2gIR0Cn9BP/JeVtdX2UKGgGR0CWaEr08NhFaAdN6ANoCEdAp/TGEh7mdXV9lChoBkdAmgttC/oJRmgHTegDaAhHQKf6ef4h2W91fZQoaAZHQJTeVB+nZTRoB03oA2gIR0Cn/pNITXardX2UKGgGR0CdRH+EAYHgaAdN6ANoCEdAp//FVrAP/nV9lChoBkdAmr7sMy8BdWgHTegDaAhHQKgAeBsANod1fZQoaAZHQJnsBZV4oqloB03oA2gIR0CoBtbF85S4dX2UKGgGR0CZdURPoFFEaAdN6ANoCEdAqAu7Ikqto3V9lChoBkdAmyuR7zCk42gHTegDaAhHQKgM99gnc+J1fZQoaAZHQJ2b5awD/2loB03oA2gIR0CoDbFMIu5CdX2UKGgGR0CYRvXb/Ot5aAdN6ANoCEdAqBN6VdHDrXV9lChoBkdAleB4bsF+u2gHTegDaAhHQKgXm+HJtBR1fZQoaAZHQJrO5UKiPABoB03oA2gIR0CoGMPnKW9ldX2UKGgGR0CYnvfDUExJaAdN6ANoCEdAqBl2sijcmHV9lChoBkdAldDlVDKHPGgHTegDaAhHQKgfPkBjnV51fZQoaAZHQJuedGRV6u5oB03oA2gIR0CoJCS0KJEZdX2UKGgGR0CZ3wJiRW92aAdN6ANoCEdAqCW+lsP8RHV9lChoBkdAm7IiExqO92gHTegDaAhHQKgmtZ0Syt51fZQoaAZHQJh/W8/UvwpoB03oA2gIR0CoLM8NpdrwdX2UKGgGR0CfVc3tKIznaAdN6ANoCEdAqDDxXGOuJXV9lChoBkdAnUvNt/FzdWgHTegDaAhHQKgyFAOavzR1fZQoaAZHQJx71B5X2dxoB03oA2gIR0CoMsShJyyVdX2UKGgGR0CcJe1W8yvcaAdN6ANoCEdAqDh6L/CIlHV9lChoBkdAmgSLPyCnP2gHTegDaAhHQKg8lF+/gzh1fZQoaAZHQJpcOn5zo2ZoB03oA2gIR0CoPcsjeKsNdX2UKGgGR0CaR9wu/UONaAdN6ANoCEdAqD6EdV/+bXV9lChoBkdAlW84FaB7NWgHTegDaAhHQKhEbowmE5B1fZQoaAZHQJ+O0Szw+dNoB03oA2gIR0CoSIiHZbpvdX2UKGgGR0Cario7muDBaAdN6ANoCEdAqEmxPCVKPHV9lChoBkdAnXldDhLoOmgHTegDaAhHQKhKYyIpH7R1fZQoaAZHQJ1C8Qe3hGZoB03oA2gIR0CoUDY7Rv3rdX2UKGgGR0CgO63aBZp0aAdN6ANoCEdAqFRKnk1dgXV9lChoBkdAm+EKnvUjLWgHTegDaAhHQKhVarDIikh1fZQoaAZHQJ0zE/zJ6ppoB03oA2gIR0CoVh1RtP56dX2UKGgGR0CXjC48EFGHaAdN6ANoCEdAqFwizZ6D5HV9lChoBkdAlpjff4yoGmgHTegDaAhHQKhgKs6JZW91fZQoaAZHQJxIj+OwPiFoB03oA2gIR0CoYU/yf+S9dX2UKGgGR0CdZEpON5t4aAdN6ANoCEdAqGIARTS9d3V9lChoBkdAmwyDUutfX2gHTegDaAhHQKhnt1dxAB11fZQoaAZHQJVQASlFc6hoB03oA2gIR0Coa8q6FuejdX2UKGgGR0CZiOCN0eU7aAdN6ANoCEdAqGzv752yLXV9lChoBkdAnDXgIldC3WgHTegDaAhHQKhtn+c6Nl11fZQoaAZHQKA/exM36yloB03oA2gIR0Coc3MSbpeNdX2UKGgGR0CfQ0qn3ta7aAdN6ANoCEdAqHfOGKyfMHV9lChoBkdAnpRCpvP1MGgHTegDaAhHQKh4+XSBshx1fZQoaAZHQJ4P/RPXTVloB03oA2gIR0CoebGp2ll9dX2UKGgGR0CdmP7btZ3caAdN6ANoCEdAqH9zCFbml3V9lChoBkdAmwVnyiEg4mgHTegDaAhHQKiDddIoVmB1fZQoaAZHQJwMw2bXpW5oB03oA2gIR0CohJW6K+BZdX2UKGgGR0CdtSDZDiOvaAdN6ANoCEdAqIVBiy6cy3V9lChoBkdAmhuBLsa86GgHTegDaAhHQKiK8JMQEp11fZQoaAZHQJzZtkhA4XJoB03oA2gIR0CojyTVlPJrdX2UKGgGR0CcJoIVM23saAdN6ANoCEdAqJBVI065oXV9lChoBkdAnjMeMZP2wmgHTegDaAhHQKiRBl2eQMh1fZQoaAZHQJqDbN5dGAloB03oA2gIR0ColqJPhybQdX2UKGgGR0CczHvr4WUKaAdN6ANoCEdAqJrCGHpKSXV9lChoBkdAmmhohllK9WgHTegDaAhHQKib40DU3GZ1fZQoaAZHQJutrOW0JF9oB03oA2gIR0ConI8TSLIgdX2UKGgGR0Ca6reCCjDbaAdN6ANoCEdAqKIYtHxz73V9lChoBkdAm6qo46wMY2gHTegDaAhHQKimQwIMSbp1fZQoaAZHQKAFveKsMiNoB03oA2gIR0Cop23FtKqXdX2UKGgGR0CXqJTKDCgsaAdN6ANoCEdAqKgha7mMfnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5f04b609c0d1228e93f4ed9c9d0bb05bf7795368150ca2665309b91f356cda0
3
+ size 1045549
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1768.5349678736263, "std_reward": 142.08698254173078, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-29T03:07:56.342721"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfdb0d0836a0604d0cce4ce932c4fea86e405f9a76d848a3594ed52cc51880d6
3
+ size 2136