File size: 3,136 Bytes
9c2a6bc
 
 
 
 
 
 
 
 
 
 
 
 
 
4d4edc0
9c2a6bc
249b497
 
 
 
 
 
 
 
4d4edc0
9c2a6bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d4edc0
9c2a6bc
 
 
 
249b497
 
 
 
 
 
 
 
 
 
 
 
9c2a6bc
 
 
 
d9dbb04
9c2a6bc
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Regression_bert_1
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# Regression_bert_1

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1363
- Train Mae: 0.2288
- Train Mse: 0.0928
- Train R2-score: 0.8065
- Validation Loss: 0.0994
- Validation Mae: 0.2297
- Validation Mse: 0.0947
- Validation R2-score: 0.8577
- Epoch: 9

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 1e-04, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Train Mae | Train Mse | Train R2-score | Validation Loss | Validation Mae | Validation Mse | Validation R2-score | Epoch |
|:----------:|:---------:|:---------:|:--------------:|:---------------:|:--------------:|:--------------:|:-------------------:|:-----:|
| 0.4890     | 0.3421    | 0.1734    | 0.1995         | 0.1833          | 0.3662         | 0.1820         | 0.8574              | 0     |
| 0.1771     | 0.3049    | 0.1526    | 0.7380         | 0.1715          | 0.3553         | 0.1701         | 0.8642              | 1     |
| 0.1563     | 0.2820    | 0.1337    | 0.7278         | 0.1823          | 0.3662         | 0.1810         | 0.8577              | 2     |
| 0.1578     | 0.2739    | 0.1288    | 0.7954         | 0.1689          | 0.3535         | 0.1674         | 0.8641              | 3     |
| 0.2301     | 0.3034    | 0.1383    | 0.7186         | 0.1158          | 0.3132         | 0.1136         | 0.8866              | 4     |
| 0.2067     | 0.2768    | 0.1203    | 0.6568         | 0.1462          | 0.3375         | 0.1445         | 0.8772              | 5     |
| 0.1631     | 0.2726    | 0.1200    | 0.7418         | 0.1646          | 0.3473         | 0.1632         | 0.8659              | 6     |
| 0.1689     | 0.2843    | 0.1269    | 0.4797         | 0.0993          | 0.2797         | 0.0972         | 0.8961              | 7     |
| 0.1756     | 0.2115    | 0.0726    | 0.8657         | 0.1047          | 0.2537         | 0.1027         | 0.8923              | 8     |
| 0.1363     | 0.2288    | 0.0928    | 0.8065         | 0.0994          | 0.2297         | 0.0947         | 0.8577              | 9     |


### Framework versions

- Transformers 4.27.3
- TensorFlow 2.11.0
- Datasets 2.10.1
- Tokenizers 0.13.2