File size: 5,320 Bytes
8c0145a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
<?xml version="1.0"?>
<net name="Model9" version="11">
<layers>
<layer id="0" name="input" type="Parameter" version="opset1">
<data shape="?,?" element_type="i64" />
<output>
<port id="0" precision="I64" names="input">
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="1" name="self.weight" type="Const" version="opset1">
<data element_type="i8" shape="151936, 1536" offset="0" size="233373696" />
<output>
<port id="0" precision="I8">
<dim>151936</dim>
<dim>1536</dim>
</port>
</output>
</layer>
<layer id="2" name="Convert_290867" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="I8">
<dim>151936</dim>
<dim>1536</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>151936</dim>
<dim>1536</dim>
</port>
</output>
</layer>
<layer id="3" name="self.weight/scale" type="Const" version="opset1">
<data element_type="f16" shape="151936, 1" offset="233373696" size="303872" />
<output>
<port id="0" precision="FP16">
<dim>151936</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="4" name="self.weight/fq_weights_0" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>151936</dim>
<dim>1536</dim>
</port>
<port id="1" precision="FP16">
<dim>151936</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>151936</dim>
<dim>1536</dim>
</port>
</output>
</layer>
<layer id="5" name="self.weight/fq_weights_0/convert" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="FP16">
<dim>151936</dim>
<dim>1536</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>151936</dim>
<dim>1536</dim>
</port>
</output>
</layer>
<layer id="6" name="aten::embedding/Convert" type="Convert" version="opset1">
<data destination_type="i32" />
<input>
<port id="0" precision="I64">
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="I32">
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="7" name="aten::embedding/Constant" type="Const" version="opset1">
<data element_type="i32" shape="" offset="233677568" size="4" />
<output>
<port id="0" precision="I32" />
</output>
</layer>
<layer id="8" name="aten::embedding/Gather" type="Gather" version="opset8">
<data batch_dims="0" />
<input>
<port id="0" precision="FP32">
<dim>151936</dim>
<dim>1536</dim>
</port>
<port id="1" precision="I32">
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="2" precision="I32" />
</input>
<output>
<port id="3" precision="FP32" names="inputs_embeds">
<dim>-1</dim>
<dim>-1</dim>
<dim>1536</dim>
</port>
</output>
</layer>
<layer id="9" name="Result_161867" type="Result" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>1536</dim>
</port>
</input>
</layer>
</layers>
<edges>
<edge from-layer="0" from-port="0" to-layer="6" to-port="0" />
<edge from-layer="1" from-port="0" to-layer="2" to-port="0" />
<edge from-layer="2" from-port="1" to-layer="4" to-port="0" />
<edge from-layer="3" from-port="0" to-layer="4" to-port="1" />
<edge from-layer="4" from-port="2" to-layer="5" to-port="0" />
<edge from-layer="5" from-port="1" to-layer="8" to-port="0" />
<edge from-layer="6" from-port="1" to-layer="8" to-port="1" />
<edge from-layer="7" from-port="0" to-layer="8" to-port="2" />
<edge from-layer="8" from-port="3" to-layer="9" to-port="0" />
</edges>
<rt_info>
<Runtime_version value="2025.1.0-17990-dc1d9675cbf" />
<conversion_parameters>
<framework value="pytorch" />
<is_python_object value="True" />
</conversion_parameters>
<nncf>
<friendly_names_were_updated value="True" />
<weight_compression>
<advanced_parameters value="{'statistics_path': None, 'awq_params': {'subset_size': 32, 'percent_to_apply': 0.002, 'alpha_min': 0.0, 'alpha_max': 1.0, 'steps': 100}, 'scale_estimation_params': {'subset_size': 64, 'initial_steps': 5, 'scale_steps': 5, 'weight_penalty': -1.0}, 'gptq_params': {'damp_percent': 0.1, 'block_size': 128, 'subset_size': 128}, 'lora_correction_params': {'adapter_rank': 8, 'num_iterations': 3, 'apply_regularization': True, 'subset_size': 128, 'use_int8_adapters': True}}" />
<all_layers value="False" />
<awq value="False" />
<backup_mode value="int8_asym" />
<gptq value="False" />
<group_size value="-1" />
<ignored_scope value="[]" />
<lora_correction value="False" />
<mode value="int8_sym" />
<ratio value="1.0" />
<scale_estimation value="False" />
<sensitivity_metric value="weight_quantization_error" />
</weight_compression>
</nncf>
<optimum>
<optimum_intel_version value="1.22.0.dev0+753f84d" />
<optimum_version value="1.24.0.dev0" />
<pytorch_version value="2.5.0+cpu" />
<transformers_version value="4.45.0" />
</optimum>
</rt_info>
</net>
|