|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: muchad/idt5-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
- bleu |
|
model-index: |
|
- name: idt5-base-qaqg_v4 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# idt5-base-qaqg_v4 |
|
|
|
This model is a fine-tuned version of [muchad/idt5-base](https://huggingface.co/muchad/idt5-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.4503 |
|
- Rouge1: 0.3985 |
|
- Rouge2: 0.2226 |
|
- Rougel: 0.3803 |
|
- Rougelsum: 0.3801 |
|
- Bleu: 0.1821 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:------:| |
|
| 1.7373 | 1.0 | 6000 | 1.5117 | 0.3682 | 0.1977 | 0.3508 | 0.3505 | 0.1687 | |
|
| 1.5048 | 2.0 | 12000 | 1.4624 | 0.3865 | 0.2162 | 0.3694 | 0.3694 | 0.1709 | |
|
| 1.399 | 3.0 | 18000 | 1.4520 | 0.3902 | 0.2156 | 0.3717 | 0.3715 | 0.1777 | |
|
| 1.2412 | 4.0 | 24000 | 1.4497 | 0.3970 | 0.2220 | 0.3791 | 0.3790 | 0.1820 | |
|
| 1.207 | 5.0 | 30000 | 1.4503 | 0.3985 | 0.2226 | 0.3803 | 0.3801 | 0.1821 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.0 |
|
- Pytorch 2.4.0a0+f70bd71a48.nv24.06 |
|
- Datasets 3.0.2 |
|
- Tokenizers 0.20.1 |
|
|