File size: 2,042 Bytes
483626e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
library_name: transformers
license: apache-2.0
base_model: muchad/idt5-base
tags:
- generated_from_trainer
metrics:
- rouge
- bleu
model-index:
- name: idt5-base-qaqg_v4
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# idt5-base-qaqg_v4

This model is a fine-tuned version of [muchad/idt5-base](https://huggingface.co/muchad/idt5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4503
- Rouge1: 0.3985
- Rouge2: 0.2226
- Rougel: 0.3803
- Rougelsum: 0.3801
- Bleu: 0.1821

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu   |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:------:|
| 1.7373        | 1.0   | 6000  | 1.5117          | 0.3682 | 0.1977 | 0.3508 | 0.3505    | 0.1687 |
| 1.5048        | 2.0   | 12000 | 1.4624          | 0.3865 | 0.2162 | 0.3694 | 0.3694    | 0.1709 |
| 1.399         | 3.0   | 18000 | 1.4520          | 0.3902 | 0.2156 | 0.3717 | 0.3715    | 0.1777 |
| 1.2412        | 4.0   | 24000 | 1.4497          | 0.3970 | 0.2220 | 0.3791 | 0.3790    | 0.1820 |
| 1.207         | 5.0   | 30000 | 1.4503          | 0.3985 | 0.2226 | 0.3803 | 0.3801    | 0.1821 |


### Framework versions

- Transformers 4.46.0
- Pytorch 2.4.0a0+f70bd71a48.nv24.06
- Datasets 3.0.2
- Tokenizers 0.20.1