|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
from data_transformer import dataset |
|
from data_loader import train_loader |
|
|
|
|
|
def show_images(images, labels, num_images=5): |
|
fig, axes = plt.subplots(1, num_images, figsize=(20, 5)) |
|
for i in range(num_images): |
|
axes[i].imshow(np.transpose(images[i], (1, 2, 0))) |
|
axes[i].set_title(labels[i]) |
|
axes[i].axis('off') |
|
plt.show() |
|
|
|
|
|
num_images_to_display = 5 |
|
sample_indices = np.random.choice(len(dataset), num_images_to_display, replace=False) |
|
sample_images = [dataset[i][0] for i in sample_indices] |
|
sample_labels = [dataset.classes[dataset[i][1]] for i in sample_indices] |
|
|
|
|
|
|
|
|
|
from torchvision.utils import make_grid |
|
|
|
def show_batch(dl): |
|
for images, labels in dl: |
|
fig, ax = plt.subplots(figsize=(16, 16)) |
|
ax.set_xticks([]); ax.set_yticks([]) |
|
ax.imshow(make_grid(images, nrow=12).permute(1, 2, 0)) |
|
break |
|
|
|
|