|
from flask import Flask, request, render_template, jsonify |
|
from predict import predict_language |
|
import joblib |
|
import tensorflow as tf |
|
import h5py |
|
|
|
model = tf.keras.models.load_model('models\\full_language_identifcation_modelf.h5') |
|
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) |
|
CountVectorizer = joblib.load('models\\cv.joblib') |
|
LabelEncoder = joblib.load('models\\le.joblib') |
|
|
|
|
|
app = Flask(__name__) |
|
|
|
@app.route('/', methods=['GET', 'POST']) |
|
def predict(): |
|
if request.method == 'POST': |
|
text = request.form['text'] |
|
prediction = predict_language(text, model, CountVectorizer, LabelEncoder) |
|
return render_template('result.html', prediction=prediction, text=text) |
|
return render_template('index.html') |
|
|
|
if __name__ == '__main__': |
|
app.run(debug=True) |