hassaanik commited on
Commit
5730892
·
verified ·
1 Parent(s): 27f66c8

Upload 3 files

Browse files
Files changed (3) hide show
  1. appf.py +80 -0
  2. facemask_detection_model_f1.pth +3 -0
  3. requirements.txt +4 -0
appf.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from flask import Flask, render_template, request, jsonify
2
+ from PIL import Image
3
+ import torch
4
+ import io
5
+ import base64
6
+ from torchvision import transforms
7
+ from face_mask_detection import FaceMaskDetectionModel
8
+ import numpy as np
9
+
10
+ app = Flask(__name__)
11
+
12
+ # Load the model
13
+ model = FaceMaskDetectionModel()
14
+ # Load the state dictionary
15
+ model_state_dict = torch.load("models\\facemask_model_statedict1_f.pth", map_location=torch.device('cpu'))
16
+ # Load the state dictionary into the model
17
+ model.load_state_dict(model_state_dict)
18
+ # Set the model to evaluation mode
19
+ model.eval()
20
+
21
+
22
+ # Define the pre-processing transform
23
+ transform = transforms.Compose([
24
+ transforms.Resize((224, 224)),
25
+ transforms.ToTensor()
26
+ ])
27
+
28
+ # Define class labels
29
+ class_labels = ['without mask', 'with mask']
30
+
31
+
32
+ @app.route('/')
33
+ def index():
34
+ return render_template('index.html')
35
+
36
+
37
+ @app.route('/predict', methods=['POST'])
38
+ def predict():
39
+ try:
40
+ # Get the image from the request
41
+ image = request.files['image']
42
+
43
+ # Pre-process the image
44
+ image_tensor = transform(Image.open(io.BytesIO(image.read())).convert('RGB')).unsqueeze(0)
45
+
46
+ # Set the model to evaluation mode
47
+ model.eval()
48
+
49
+ # Make a prediction
50
+ with torch.no_grad():
51
+ output = model(image_tensor)
52
+ print("Output: ", output)
53
+
54
+ # Convert the output to probabilities using softmax
55
+ probabilities = torch.nn.functional.softmax(output[0], dim=0)
56
+ print("Probabilities: ", probabilities)
57
+
58
+ # Get the predicted class
59
+ predicted_class = torch.argmax(probabilities).item()
60
+ print("Predicted: ", predicted_class)
61
+
62
+ # Get the probability for the predicted class
63
+ predicted_probability = probabilities[predicted_class].item()
64
+
65
+ # Define class labels
66
+ class_labels = ['without mask', 'with mask']
67
+
68
+ print(f"Predicted Class: {class_labels[predicted_class]}")
69
+ print(f"Probability: {predicted_probability:.4f}")
70
+
71
+ # Return the prediction along with the uploaded image
72
+ image_base64 = base64.b64encode(image.read()).decode('utf-8')
73
+ return jsonify({'prediction': predicted_class, 'image': image_base64})
74
+ except Exception as e:
75
+ return jsonify({'error': str(e)}), 500
76
+
77
+
78
+
79
+ if __name__ == '__main__':
80
+ app.run(debug=True)
facemask_detection_model_f1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7258119cb55a3a49bf18f5d4034690009205313cf309810c8a51cf109d5af1ce
3
+ size 51776804
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ torch
2
+ torchvision
3
+ flask
4
+ numpy