harshiv commited on
Commit
410d0b5
·
1 Parent(s): ee9beff

Delete api.py

Browse files
Files changed (1) hide show
  1. api.py +0 -92
api.py DELETED
@@ -1,92 +0,0 @@
1
- from flask import Flask, request, jsonify
2
- import numpy as np
3
- import pandas as pd
4
- from sklearn.model_selection import train_test_split
5
- from sklearn.linear_model import LogisticRegression
6
- from sklearn.neighbors import KNeighborsClassifier
7
- from sklearn import svm
8
- from sklearn.tree import DecisionTreeClassifier
9
- from sklearn.ensemble import RandomForestClassifier
10
- from sklearn.ensemble import GradientBoostingClassifier
11
- from xgboost import XGBClassifier
12
- from sklearn.metrics import accuracy_score
13
- import joblib
14
- import pickle
15
-
16
- app = Flask(__name__)
17
-
18
- @app.route('/predict', methods=['POST'])
19
- def predict():
20
- data = request.get_json()
21
-
22
- # Load trained models
23
- with open('rf_hacathon_fullstk.pkl', 'rb') as f1:
24
- rf_fullstk = pickle.load(f1)
25
- with open('rf_hacathon_prodengg.pkl', 'rb') as f2:
26
- rf_prodengg = pickle.load(f2)
27
- with open('rf_hacathon_mkt.pkl', 'rb') as f3:
28
- rf_mkt = pickle.load(f3)
29
-
30
- # Extract input features
31
- new_data_fullstk = pd.DataFrame({
32
- 'degree_p': data['degree_p'],
33
- 'internship': data['internship'],
34
- 'DSA': data['DSA'],
35
- 'java': data['java'],
36
- }, index=[0])
37
-
38
- new_data_prodengg = pd.DataFrame({
39
- 'degree_p': data['degree_p'],
40
- 'internship': data['internship'],
41
- 'management': data['management'],
42
- 'leadership': data['leadership'],
43
- }, index=[0])
44
-
45
- new_data_mkt = pd.DataFrame({
46
- 'degree_p': data['degree_p'],
47
- 'internship': data['internship'],
48
- 'communication': data['communication'],
49
- 'sales': data['sales'],
50
- }, index=[0])
51
-
52
- # Make predictions
53
- p_prodeng = rf_prodengg.predict(new_data_prodengg)
54
- prob_prdeng = rf_prodengg.predict_proba(new_data_prodengg)
55
- if p_prodeng == 1:
56
- pred_prodeng = 'Placed'
57
- prob_prodeng = prob_prdeng[0][1]
58
- else:
59
- pred_prodeng = 'Not-placed'
60
- prob_prodeng = prob_prdeng[0][0]
61
-
62
- p_fstk = rf_fullstk.predict(new_data_fullstk)
63
- prob_fstk = rf_fullstk.predict_proba(new_data_fullstk)
64
- if p_fstk == 1:
65
- pred_fstk = 'Placed'
66
- prob_fstk = prob_fstk[0][1]
67
- else:
68
- pred_fstk = 'Not-placed'
69
- prob_fstk = prob_fstk[0][0]
70
-
71
- p_mkt = rf_mkt.predict(new_data_mkt)
72
- prob_mkt = rf_mkt.predict_proba(new_data_mkt)
73
- if p_mkt == 1:
74
- pred_mkt = 'Placed'
75
- prob_mkt = prob_mkt[0][1]
76
- else:
77
- pred_mkt = 'Not-placed'
78
- prob_mkt = prob_mkt[0][0]
79
-
80
- result = {
81
- 'prediction_fullstk': pred_fstk,
82
- 'probability_fullstk': prob_fstk,
83
- 'prediction_prodengg': pred_prodeng,
84
- 'probability_prodengg': prob_prodeng,
85
- 'prediction_mkt': pred_mkt,
86
- 'probability_mkt': prob_mkt
87
- }
88
-
89
- return jsonify(result)
90
-
91
- if __name__ == '__main__':
92
- app.run(debug=True)