|
|
|
import os |
|
|
|
import tensorflow as tf |
|
from keras.preprocessing.image import ImageDataGenerator |
|
tf.__version__ |
|
|
|
|
|
|
|
train_datagen = ImageDataGenerator(rescale = 1./255, |
|
shear_range = 0.2, |
|
zoom_range = 0.2, |
|
horizontal_flip = True) |
|
training_set = train_datagen.flow_from_directory(r"C:\Users\ASUS PC\OneDrive\Desktop\dataset huggingface\aiornot\.extras\dataset", |
|
target_size = (64, 64), |
|
batch_size = 32, |
|
class_mode = 'binary') |
|
|
|
|
|
test_datagen = ImageDataGenerator(rescale = 1./255) |
|
test_set = test_datagen.flow_from_directory(r"C:\Users\ASUS PC\OneDrive\Desktop\dataset huggingface\aiornot\.extras\test dataset", |
|
target_size = (64, 64), |
|
batch_size = 32, |
|
class_mode = 'binary') |
|
|
|
|
|
|
|
|
|
cnn = tf.keras.models.Sequential() |
|
|
|
|
|
cnn.add(tf.keras.layers.Conv2D(filters=32, kernel_size=3, activation='relu', input_shape=[64, 64, 3])) |
|
|
|
|
|
cnn.add(tf.keras.layers.MaxPool2D(pool_size=2, strides=2)) |
|
|
|
|
|
cnn.add(tf.keras.layers.Conv2D(filters=32, kernel_size=3, activation='relu')) |
|
cnn.add(tf.keras.layers.MaxPool2D(pool_size=2, strides=2)) |
|
|
|
|
|
cnn.add(tf.keras.layers.Flatten()) |
|
|
|
|
|
cnn.add(tf.keras.layers.Dense(units=128, activation='relu')) |
|
|
|
|
|
cnn.add(tf.keras.layers.Dense(units=1, activation='sigmoid')) |
|
|
|
|
|
|
|
|
|
cnn.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy']) |
|
|
|
checkpoint_path = "training_1/cp.ckpt" |
|
checkpoint_dir = os.path.dirname(checkpoint_path) |
|
|
|
|
|
cnn.fit(x = training_set, validation_data = test_set, epochs = 35) |
|
|
|
cnn.save(r'C:\Users\ASUS PC\OneDrive\Desktop\dataset huggingface\aiornot\.extras\train') |
|
|
|
|
|
import tensorflow as tf |
|
from keras.models import load_model |
|
from keras.preprocessing.image import ImageDataGenerator |
|
import os |
|
import keras.utils as image |
|
import pandas as pd |
|
|
|
import os |
|
|
|
import tensorflow as tf |
|
import numpy as np |
|
from keras.preprocessing.image import ImageDataGenerator |
|
tf.__version__ |
|
|
|
model = tf.keras.models.load_model(r'C:\Users\ASUS PC\OneDrive\Desktop\dataset huggingface\aiornot\.extras\train') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
import keras.utils as image |
|
res= [] |
|
count=0 |
|
test_dir = r'C:\Users\ASUS PC\OneDrive\Desktop\dataset huggingface\aiornot\.extras\testset\test' |
|
test_images = [] |
|
l= len(os.listdir(test_dir)) |
|
for i in range(l): |
|
path =r'C:/Users/ASUS PC/OneDrive/Desktop/dataset huggingface/aiornot/.extras/testset/test/' + str(i) + '.jpg' |
|
test_image = image.load_img( path, target_size = (64, 64)) |
|
test_image = image.img_to_array(test_image) |
|
test_image = np.expand_dims(test_image, axis = 0) |
|
result = model.predict(test_image) |
|
if int(result[0][0]) == 1: |
|
count+=1 |
|
res.append(int(result[0][0])) |
|
|
|
|
|
data = {'id' :os.listdir(test_dir), 'label' : res } |
|
df= pd.DataFrame(data) |
|
df.to_excel(r'Submission.xlsx', index=False) |
|
|