File size: 4,770 Bytes
3da5e9f
a652903
 
3da5e9f
 
 
 
a652903
 
 
 
 
3da5e9f
 
a652903
 
 
 
 
 
 
 
 
 
 
 
 
c9b064c
a652903
 
c9b064c
a652903
 
c9b064c
a652903
 
c9b064c
3da5e9f
 
 
 
 
 
 
a652903
3da5e9f
c9b064c
 
 
 
 
3da5e9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84c248f
3da5e9f
 
 
 
c9b064c
a652903
 
 
 
 
c9b064c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a652903
3da5e9f
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
---
license: apache-2.0
base_model: distilbert-base-cased
tags:
- generated_from_trainer
datasets:
- shipping_label_ner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: ner_bert_model
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: shipping_label_ner
      type: shipping_label_ner
      config: shipping_label_ner
      split: validation
      args: shipping_label_ner
    metrics:
    - name: Precision
      type: precision
      value: 0.8192771084337349
    - name: Recall
      type: recall
      value: 0.9066666666666666
    - name: F1
      type: f1
      value: 0.8607594936708859
    - name: Accuracy
      type: accuracy
      value: 0.903954802259887
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ner_bert_model

This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the shipping_label_ner dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4675
- Precision: 0.8193
- Recall: 0.9067
- F1: 0.8608
- Accuracy: 0.9040

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 7    | 1.9567          | 0.0       | 0.0    | 0.0    | 0.4294   |
| No log        | 2.0   | 14   | 1.7382          | 1.0       | 0.0133 | 0.0263 | 0.4350   |
| No log        | 3.0   | 21   | 1.5156          | 0.56      | 0.1867 | 0.28   | 0.5424   |
| No log        | 4.0   | 28   | 1.3070          | 0.5185    | 0.3733 | 0.4341 | 0.6215   |
| No log        | 5.0   | 35   | 1.1073          | 0.6792    | 0.48   | 0.5625 | 0.6667   |
| No log        | 6.0   | 42   | 0.9590          | 0.6970    | 0.6133 | 0.6525 | 0.7288   |
| No log        | 7.0   | 49   | 0.8036          | 0.7324    | 0.6933 | 0.7123 | 0.7853   |
| No log        | 8.0   | 56   | 0.7173          | 0.6860    | 0.7867 | 0.7329 | 0.8305   |
| No log        | 9.0   | 63   | 0.5963          | 0.7778    | 0.84   | 0.8077 | 0.8814   |
| No log        | 10.0  | 70   | 0.5354          | 0.7901    | 0.8533 | 0.8205 | 0.8870   |
| No log        | 11.0  | 77   | 0.5048          | 0.8       | 0.8533 | 0.8258 | 0.8814   |
| No log        | 12.0  | 84   | 0.4992          | 0.8293    | 0.9067 | 0.8662 | 0.9096   |
| No log        | 13.0  | 91   | 0.4745          | 0.8205    | 0.8533 | 0.8366 | 0.8927   |
| No log        | 14.0  | 98   | 0.4489          | 0.8608    | 0.9067 | 0.8831 | 0.9153   |
| No log        | 15.0  | 105  | 0.4236          | 0.8608    | 0.9067 | 0.8831 | 0.9153   |
| No log        | 16.0  | 112  | 0.4621          | 0.8193    | 0.9067 | 0.8608 | 0.9096   |
| No log        | 17.0  | 119  | 0.4417          | 0.85      | 0.9067 | 0.8774 | 0.9209   |
| No log        | 18.0  | 126  | 0.4642          | 0.8095    | 0.9067 | 0.8553 | 0.9040   |
| No log        | 19.0  | 133  | 0.4244          | 0.85      | 0.9067 | 0.8774 | 0.9096   |
| No log        | 20.0  | 140  | 0.4731          | 0.8193    | 0.9067 | 0.8608 | 0.9096   |
| No log        | 21.0  | 147  | 0.4697          | 0.8193    | 0.9067 | 0.8608 | 0.9040   |
| No log        | 22.0  | 154  | 0.4330          | 0.8293    | 0.9067 | 0.8662 | 0.9096   |
| No log        | 23.0  | 161  | 0.4531          | 0.8193    | 0.9067 | 0.8608 | 0.9040   |
| No log        | 24.0  | 168  | 0.4433          | 0.8193    | 0.9067 | 0.8608 | 0.9040   |
| No log        | 25.0  | 175  | 0.4477          | 0.8095    | 0.9067 | 0.8553 | 0.9040   |
| No log        | 26.0  | 182  | 0.4446          | 0.8293    | 0.9067 | 0.8662 | 0.9096   |
| No log        | 27.0  | 189  | 0.4578          | 0.8293    | 0.9067 | 0.8662 | 0.9096   |
| No log        | 28.0  | 196  | 0.4640          | 0.8293    | 0.9067 | 0.8662 | 0.9096   |
| No log        | 29.0  | 203  | 0.4683          | 0.8193    | 0.9067 | 0.8608 | 0.9040   |
| No log        | 30.0  | 210  | 0.4675          | 0.8193    | 0.9067 | 0.8608 | 0.9040   |


### Framework versions

- Transformers 4.39.1
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2