haritzpuerto commited on
Commit
8d073f1
1 Parent(s): e25d7bf

model upload

Browse files
README.md ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ inference: false
3
+ tags:
4
+ - onnx
5
+ - question-answering
6
+ - bert
7
+ - adapterhub:qa/squad2
8
+ - adapter-transformers
9
+ datasets:
10
+ - squad_v2
11
+ language:
12
+ - en
13
+ ---
14
+
15
+ # ONNX export of Adapter `AdapterHub/bert-base-uncased-pf-squad_v2` for bert-base-uncased
16
+ ## Conversion of [AdapterHub/bert-base-uncased-pf-squad_v2](https://huggingface.co/AdapterHub/bert-base-uncased-pf-squad_v2) for UKP SQuARE
17
+
18
+
19
+ ## Usage
20
+ ```python
21
+ onnx_path = hf_hub_download(repo_id='UKP-SQuARE/bert-base-uncased-pf-squad_v2-onnx', filename='model.onnx') # or model_quant.onnx for quantization
22
+ onnx_model = InferenceSession(onnx_path, providers=['CPUExecutionProvider'])
23
+
24
+ context = 'ONNX is an open format to represent models. The benefits of using ONNX include interoperability of frameworks and hardware optimization.'
25
+ question = 'What are advantages of ONNX?'
26
+ tokenizer = AutoTokenizer.from_pretrained('UKP-SQuARE/bert-base-uncased-pf-squad_v2-onnx')
27
+
28
+ inputs = tokenizer(question, context, padding=True, truncation=True, return_tensors='np')
29
+ inputs_int64 = {key: np.array(inputs[key], dtype=np.int64) for key in inputs}
30
+ outputs = onnx_model.run(input_feed=dict(inputs_int64), output_names=None)
31
+ ```
32
+
33
+ ## Architecture & Training
34
+
35
+ The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer.
36
+ In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs).
37
+
38
+
39
+ ## Evaluation results
40
+
41
+ Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results.
42
+
43
+ ## Citation
44
+
45
+ If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247):
46
+
47
+ ```bibtex
48
+ @inproceedings{poth-etal-2021-pre,
49
+ title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection",
50
+ author = {Poth, Clifton and
51
+ Pfeiffer, Jonas and
52
+ R{"u}ckl{'e}, Andreas and
53
+ Gurevych, Iryna},
54
+ booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
55
+ month = nov,
56
+ year = "2021",
57
+ address = "Online and Punta Cana, Dominican Republic",
58
+ publisher = "Association for Computational Linguistics",
59
+ url = "https://aclanthology.org/2021.emnlp-main.827",
60
+ pages = "10585--10605",
61
+ }
62
+ ```
config.json ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "bert-base-uncased",
3
+ "adapters": {
4
+ "adapters": {
5
+ "squad_v2": "9076f36a74755ac4"
6
+ },
7
+ "config_map": {
8
+ "9076f36a74755ac4": {
9
+ "adapter_residual_before_ln": false,
10
+ "cross_adapter": false,
11
+ "factorized_phm_W": true,
12
+ "factorized_phm_rule": false,
13
+ "hypercomplex_nonlinearity": "glorot-uniform",
14
+ "init_weights": "bert",
15
+ "inv_adapter": null,
16
+ "inv_adapter_reduction_factor": null,
17
+ "is_parallel": false,
18
+ "learn_phm": true,
19
+ "leave_out": [],
20
+ "ln_after": false,
21
+ "ln_before": false,
22
+ "mh_adapter": false,
23
+ "non_linearity": "relu",
24
+ "original_ln_after": true,
25
+ "original_ln_before": true,
26
+ "output_adapter": true,
27
+ "phm_bias": true,
28
+ "phm_c_init": "normal",
29
+ "phm_dim": 4,
30
+ "phm_init_range": 0.0001,
31
+ "phm_layer": false,
32
+ "phm_rank": 1,
33
+ "reduction_factor": 16,
34
+ "residual_before_ln": true,
35
+ "scaling": 1.0,
36
+ "shared_W_phm": false,
37
+ "shared_phm_rule": true,
38
+ "use_gating": false
39
+ }
40
+ },
41
+ "fusion_config_map": {},
42
+ "fusions": {}
43
+ },
44
+ "architectures": [
45
+ "BertModelWithHeads"
46
+ ],
47
+ "attention_probs_dropout_prob": 0.1,
48
+ "classifier_dropout": null,
49
+ "gradient_checkpointing": false,
50
+ "hidden_act": "gelu",
51
+ "hidden_dropout_prob": 0.1,
52
+ "hidden_size": 768,
53
+ "initializer_range": 0.02,
54
+ "intermediate_size": 3072,
55
+ "layer_norm_eps": 1e-12,
56
+ "max_position_embeddings": 512,
57
+ "model_type": "bert",
58
+ "num_attention_heads": 12,
59
+ "num_hidden_layers": 12,
60
+ "pad_token_id": 0,
61
+ "position_embedding_type": "absolute",
62
+ "prediction_heads": {
63
+ "squad_v2": {
64
+ "activation_function": "tanh",
65
+ "head_type": "question_answering",
66
+ "label2id": {
67
+ "LABEL_0": 0,
68
+ "LABEL_1": 1
69
+ },
70
+ "layers": 1,
71
+ "num_labels": 2
72
+ }
73
+ },
74
+ "torch_dtype": "float32",
75
+ "transformers_version": "4.21.3",
76
+ "type_vocab_size": 2,
77
+ "use_cache": false,
78
+ "vocab_size": 30522
79
+ }
model.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9945ea827365508fab468c67b88ece7248dd96535ee56cc6ad4eb6f55995e51
3
+ size 439473675
model_quant.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ea7f0fc981aef2c6ed759555b7b5b6ed7a499cff269fed23640838b738be85c
3
+ size 110590829
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "do_lower_case": true,
4
+ "mask_token": "[MASK]",
5
+ "model_max_length": 512,
6
+ "name_or_path": "bert-base-uncased",
7
+ "pad_token": "[PAD]",
8
+ "sep_token": "[SEP]",
9
+ "special_tokens_map_file": null,
10
+ "strip_accents": null,
11
+ "tokenize_chinese_chars": true,
12
+ "tokenizer_class": "BertTokenizer",
13
+ "unk_token": "[UNK]"
14
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff