TangoFlux-ONNX-RKNN2 / export_onnx.py
happyme531's picture
Upload 13 files
f3a1217 verified
raw
history blame
7.47 kB
import torch
import torch.nn as nn
from diffusers import AutoencoderOobleck
from diffusers import FluxTransformer2DModel
from tangoflux import TangoFluxInference
from tangoflux.model import DurationEmbedder, TangoFlux
def export_vae_encoder(vae, save_path, batch_size=1, audio_length=441000):
"""导出VAE编码器到ONNX格式
Args:
vae: AutoencoderOobleck实例
save_path: 保存路径
batch_size: batch大小
audio_length: 音频长度(默认10秒,44100Hz采样率)
"""
vae.eval()
# 创建dummy input - 注意这里是双声道音频
dummy_input = torch.randn(batch_size, 2, audio_length)
# 创建一个包装类来处理forward调用
class VAEEncoderWrapper(nn.Module):
def __init__(self, vae):
super().__init__()
self.vae = vae
def forward(self, audio):
return self.vae.encode(audio).latent_dist.sample()
wrapper = VAEEncoderWrapper(vae)
# 导出encoder部分
torch.onnx.export(
wrapper,
dummy_input,
save_path,
input_names=['audio'],
output_names=['latent'],
dynamic_axes={
'audio': {0: 'batch_size', 2: 'audio_length'},
'latent': {0: 'batch_size', 2: 'latent_length'}
},
opset_version=17
)
def export_vae_decoder(vae, save_path, batch_size=1, latent_length=645):
"""导出VAE解码器到ONNX格式
Args:
vae: AutoencoderOobleck实例
save_path: 保存路径
batch_size: batch大小
latent_length: 潜在向量长度
"""
vae.eval()
# 创建dummy input
dummy_input = torch.randn(batch_size, 64, latent_length)
# 创建一个包装类来处理forward调用
class VAEDecoderWrapper(nn.Module):
def __init__(self, vae):
super().__init__()
self.vae = vae
def forward(self, latent):
return self.vae.decode(latent).sample
wrapper = VAEDecoderWrapper(vae)
# 导出decoder部分
torch.onnx.export(
wrapper,
dummy_input,
save_path,
input_names=['latent'],
output_names=['audio'],
dynamic_axes={
'latent': {0: 'batch_size', 2: 'latent_length'},
'audio': {0: 'batch_size', 2: 'audio_length'}
},
opset_version=17
)
def export_duration_embedder(duration_embedder, save_path, batch_size=1):
"""导出Duration Embedder到ONNX格式
Args:
duration_embedder: DurationEmbedder实例
save_path: 保存路径
batch_size: batch大小
"""
duration_embedder.eval()
# 创建dummy input - 注意这里是标量值
dummy_input = torch.tensor([[10.0]], dtype=torch.float32) # 10秒
# 导出
torch.onnx.export(
duration_embedder,
dummy_input,
save_path,
input_names=['duration'],
output_names=['embedding'],
dynamic_axes={
'duration': {0: 'batch_size'},
'embedding': {0: 'batch_size'}
},
opset_version=17
)
def export_flux_transformer(transformer, save_path, batch_size=1, seq_length=645):
"""导出FluxTransformer2D到ONNX格式
Args:
transformer: FluxTransformer2DModel实例
save_path: 保存路径
batch_size: batch大小
seq_length: 序列长度
"""
transformer.eval()
# 创建dummy inputs - 注意所有输入的形状
hidden_states = torch.randn(batch_size, seq_length, 64) # [B, S, C]
timestep = torch.tensor([0.5]) # [1]
pooled_text = torch.randn(batch_size, 1024) # [B, D]
encoder_hidden_states = torch.randn(batch_size, 64, 1024) # [B, L, D]
txt_ids = torch.zeros(batch_size, 64, 3).to(torch.int64) # [B, L, 3]
img_ids = torch.arange(seq_length).unsqueeze(0).unsqueeze(-1).repeat(batch_size, 1, 3).to(torch.int64) # [B, S, 3]
# 创建一个包装类来处理forward调用
class TransformerWrapper(nn.Module):
def __init__(self, transformer):
super().__init__()
self.transformer = transformer
def forward(self, hidden_states, timestep, pooled_text, encoder_hidden_states, txt_ids, img_ids):
return self.transformer(
hidden_states=hidden_states,
timestep=timestep,
guidance=None,
pooled_projections=pooled_text,
encoder_hidden_states=encoder_hidden_states,
txt_ids=txt_ids,
img_ids=img_ids,
return_dict=False
)[0]
wrapper = TransformerWrapper(transformer)
# 导出
torch.onnx.export(
wrapper,
(hidden_states, timestep, pooled_text, encoder_hidden_states, txt_ids, img_ids),
save_path,
input_names=['hidden_states', 'timestep', 'pooled_text', 'encoder_hidden_states', 'txt_ids', 'img_ids'],
output_names=['output'],
dynamic_axes={
'hidden_states': {0: 'batch_size', 1: 'sequence_length'},
'pooled_text': {0: 'batch_size'},
'encoder_hidden_states': {0: 'batch_size', 1: 'text_length'},
'txt_ids': {0: 'batch_size', 1: 'text_length'},
'img_ids': {0: 'batch_size', 1: 'sequence_length'}
},
opset_version=17
)
def export_proj_layer(proj_layer, save_path, batch_size=1):
"""导出projection层到ONNX格式
Args:
proj_layer: 投影层(fc层)实例
save_path: 保存路径
batch_size: batch大小
"""
proj_layer.eval()
# 创建dummy input - 使用T5的hidden size
dummy_input = torch.randn(batch_size, 1024) # T5-large hidden size
# 导出
torch.onnx.export(
proj_layer,
dummy_input,
save_path,
input_names=['text_embedding'],
output_names=['projected'],
dynamic_axes={
'text_embedding': {0: 'batch_size'},
'projected': {0: 'batch_size'}
},
opset_version=17
)
def export_all(model_path, output_dir):
"""导出所有组件到ONNX格式
Args:
model_path: TangoFlux模型路径
output_dir: 输出目录
"""
import os
# 加载模型
model = TangoFluxInference(name=model_path, device="cpu")
# 创建输出目录
os.makedirs(output_dir, exist_ok=True)
# 导出VAE
export_vae_encoder(model.vae, f"{output_dir}/vae_encoder.onnx")
export_vae_decoder(model.vae, f"{output_dir}/vae_decoder.onnx")
# 导出Duration Embedder
export_duration_embedder(model.model.duration_emebdder, f"{output_dir}/duration_embedder.onnx")
# 导出Transformer
export_flux_transformer(model.model.transformer, f"{output_dir}/transformer.onnx")
# 导出Projection层
export_proj_layer(model.model.fc, f"{output_dir}/proj.onnx")
print(f"所有模型已导出到: {output_dir}")
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="导出TangoFlux模型到ONNX格式")
parser.add_argument("--model_path", type=str, required=True, help="TangoFlux模型路径")
parser.add_argument("--output_dir", type=str, required=True, help="输出目录")
args = parser.parse_args()
export_all(args.model_path, args.output_dir)