Safetensors
llama
haoranxu commited on
Commit
ea1f564
·
verified ·
1 Parent(s): f6fc4d0

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +94 -0
README.md ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - oscar-corpus/OSCAR-2301
5
+ - allenai/nllb
6
+ - Helsinki-NLP/opus-100
7
+ language:
8
+ - en
9
+ - ka
10
+ - zh
11
+ - ja
12
+ - ko
13
+ - fi
14
+ - et
15
+ base_model:
16
+ - haoranxu/ALMA-13B-Pretrain
17
+ - meta-llama/Llama-2-13b-hf
18
+ ---
19
+
20
+
21
+ X-ALMA builds upon [ALMA-R](https://arxiv.org/pdf/2401.08417) by expanding support from 6 to 50 languages. It utilizes a plug-and-play architecture with language-specific modules, complemented by a carefully designed training recipe. This release includes the **language-specific X-ALMA LoRA module and a merged model that supports the languages in Group 6: English (en), Georgian (ka), Chinese (zh), Japanese (ja), Korean (ko), Finnish (fi), and Estonian (et)**.
22
+
23
+ Model X-ALMA checkpoints are released at huggingface:
24
+ | Models | Base Model Link | Description |
25
+ |:-------------:|:---------------:|:---------------:|
26
+ | X-ALMA | [haoranxu/X-ALMA]([https://huggingface.co/haoranxu/ALMA-7B](https://huggingface.co/haoranxu/X-ALMA)) | X-ALMA model with all its modules |
27
+ | X-ALMA-13B-Pretrain | [haoranxu/X-ALMA-13B-Pretrain](https://huggingface.co/haoranxu/X-ALMA-13B-Pretrain) | X-ALMA 13B multilingual pre-trained base model |
28
+ | X-ALMA-Group1 | [haoranxu/X-ALMA-13B-Group1](https://huggingface.co/haoranxu/X-ALMA-13B-Group1) | X-ALMA group1 specific module and the merged model |
29
+ | X-ALMA-Group2 | [haoranxu/X-ALMA-13B-Group2](https://huggingface.co/haoranxu/X-ALMA-13B-Group2) | X-ALMA group2 specific module and the merged model |
30
+ | X-ALMA-Group3 | [haoranxu/X-ALMA-13B-Group3](https://huggingface.co/haoranxu/X-ALMA-13B-Group3) | X-ALMA group3 specific module and the merged model |
31
+ | X-ALMA-Group4 | [haoranxu/X-ALMA-13B-Group4](https://huggingface.co/haoranxu/X-ALMA-13B-Group4) | X-ALMA group4 specific module and the merged model |
32
+ | X-ALMA-Group5 | [haoranxu/X-ALMA-13B-Group5](https://huggingface.co/haoranxu/X-ALMA-13B-Group5) | X-ALMA group5 specific module and the merged model |
33
+ | X-ALMA-Group6 | [haoranxu/X-ALMA-13B-Group6](https://huggingface.co/haoranxu/X-ALMA-13B-Group6) | X-ALMA group6 specific module and the merged model |
34
+ | X-ALMA-Group7 | [haoranxu/X-ALMA-13B-Group7](https://huggingface.co/haoranxu/X-ALMA-13B-Group7) | X-ALMA group7 specific module and the merged model |
35
+ | X-ALMA-Group8 | [haoranxu/X-ALMA-13B-Group8](https://huggingface.co/haoranxu/X-ALMA-13B-Group8) | X-ALMA group8 specific module and the merged model |
36
+
37
+ ## A quick start:
38
+ There are three ways to load X-ALMA for translation. An example of translating "我爱机器翻译。" into English (X-ALMA should also able to do multilingual open-ended QA).
39
+
40
+ **The first way**: loading the merged model where the language-specific module has been merged into the base model **(Recommended)**:
41
+ ```
42
+ import torch
43
+ from transformers import AutoModelForCausalLM
44
+ from transformers import AutoTokenizer
45
+ from peft import PeftModel
46
+
47
+ GROUP2LANG = {
48
+ 1: ["da", "nl", "de", "is", "no", "sv", "af"],
49
+ 2: ["ca", "ro", "gl", "it", "pt", "es"],
50
+ 3: ["bg", "mk", "sr", "uk", "ru"],
51
+ 4: ["id", "ms", "th", "vi", "mg", "fr"],
52
+ 5: ["hu", "el", "cs", "pl", "lt", "lv"],
53
+ 6: ["ka", "zh", "ja", "ko", "fi", "et"],
54
+ 7: ["gu", "hi", "mr", "ne", "ur"],
55
+ 8: ["az", "kk", "ky", "tr", "uz", "ar", "he", "fa"],
56
+ }
57
+ LANG2GROUP = {lang: str(group) for group, langs in GROUP2LANG.items() for lang in langs}
58
+ group_id = LANG2GROUP["zh"]
59
+
60
+ model = AutoModelForCausalLM.from_pretrained(f"haoranxu/X-ALMA-13B-Group{group_id}", torch_dtype=torch.float16, device_map="auto")
61
+ tokenizer = AutoTokenizer.from_pretrained(f"haoranxu/X-ALMA-13B-Group{group_id}", padding_side='left')
62
+
63
+ # Add the source sentence into the prompt template
64
+ prompt="Translate this from Chinese to English:\nChinese: 我爱机器翻译。\nEnglish:"
65
+
66
+ # X-ALMA needs chat template but ALMA and ALMA-R don't need it.
67
+ chat_style_prompt = [{"role": "user", "content": prompt}]
68
+ prompt = tokenizer.apply_chat_template(chat_style_prompt, tokenize=False, add_generation_prompt=True)
69
+
70
+ input_ids = tokenizer(prompt, return_tensors="pt", padding=True, max_length=40, truncation=True).input_ids.cuda()
71
+
72
+ # Translation
73
+ with torch.no_grad():
74
+ generated_ids = model.generate(input_ids=input_ids, num_beams=5, max_new_tokens=20, do_sample=True, temperature=0.6, top_p=0.9)
75
+ outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
76
+ print(outputs)
77
+ ```
78
+
79
+ **The second way**: loading the base model and language-specific module **(Recommended)**:
80
+ ```
81
+ model = AutoModelForCausalLM.from_pretrained("haoranxu/X-ALMA-13B-Pretrain", torch_dtype=torch.float16, device_map="auto")
82
+ model = PeftModel.from_pretrained(model, f"haoranxu/X-ALMA-13B-Group{group_id}")
83
+ tokenizer = AutoTokenizer.from_pretrained(f"haoranxu/X-ALMA-13B-Group{group_id}", padding_side='left')
84
+ ```
85
+
86
+ **The third way**: loading the base model with all language-specific modules like MoE: (Require large GPU memory)
87
+ ```
88
+ from modeling_xalma import XALMAForCausalLM
89
+ model = XALMAForCausalLM.from_pretrained("haoranxu/X-ALMA", torch_dtype=torch.float16, device_map="auto")
90
+ tokenizer = AutoTokenizer.from_pretrained("haoranxu/X-ALMA", padding_side='left')
91
+
92
+ # Add `lang="zh"`: specify the language to instruct the model on which group to use for the third loading method during generation.
93
+ generated_ids = model.generate(input_ids=input_ids, num_beams=5, max_new_tokens=20, do_sample=True, temperature=0.6, top_p=0.9, lang="zh")
94
+ ```