haophancs commited on
Commit
edde102
1 Parent(s): 761541f

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,664 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: sentence-transformers
6
+ tags:
7
+ - sentence-transformers
8
+ - sentence-similarity
9
+ - feature-extraction
10
+ - generated_from_trainer
11
+ - dataset_size:6300
12
+ - loss:MatryoshkaLoss
13
+ - loss:MultipleNegativesRankingLoss
14
+ base_model: BAAI/bge-base-en-v1.5
15
+ datasets: []
16
+ metrics:
17
+ - cosine_accuracy@1
18
+ - cosine_accuracy@3
19
+ - cosine_accuracy@5
20
+ - cosine_accuracy@10
21
+ - cosine_precision@1
22
+ - cosine_precision@3
23
+ - cosine_precision@5
24
+ - cosine_precision@10
25
+ - cosine_recall@1
26
+ - cosine_recall@3
27
+ - cosine_recall@5
28
+ - cosine_recall@10
29
+ - cosine_ndcg@10
30
+ - cosine_mrr@10
31
+ - cosine_map@100
32
+ widget:
33
+ - source_sentence: Net cash used in financing activities in 2023 was $2,430 million.
34
+ sentences:
35
+ - What criteria does Airbnb, Inc. use to assess if an available-for-sale security
36
+ should be recorded as impaired on their financial statements?
37
+ - What was the total amount of net cash used in financing activities in 2023?
38
+ - How much did Visa authorize for its share repurchase program in October 2023?
39
+ - source_sentence: Microsoft® and Windows® are either registered trademarks or trademarks
40
+ of Microsoft Corporation in the United States and/or other countries.
41
+ sentences:
42
+ - Where does Eli Lilly and Company manufacture and distribute its products?
43
+ - What is the significance of Microsoft® and Windows® in relation to Microsoft Corporation?
44
+ - What percentage of total net revenue did the Americas region contribute in 2023?
45
+ - source_sentence: We make available free of charge on the Investor Relations section
46
+ of our corporate website all of the reports we file with or furnish to the SEC
47
+ as soon as reasonably practicable, after the reports are filed or furnished.
48
+ sentences:
49
+ - Is there a cost to access reports filed by Intuit Inc. with the SEC?
50
+ - What amount of cash, cash equivalents, and restricted cash did the company have
51
+ at the end of the period?
52
+ - Where in IBM’s 2023 Form 10-K can the Financial Statement Schedule be found?
53
+ - source_sentence: The U.S. Automobile Information and Disclosure Act also requires
54
+ manufacturers of motor vehicles to disclose certain information regarding the
55
+ manufacturer’s suggested retail price, optional equipment and pricing.
56
+ sentences:
57
+ - What does the Adjusted Effective Tax Rate measure exclude?
58
+ - What was the fair value of the total consideration transferred for the acquisition
59
+ discussed, and how was it composed?
60
+ - Which act requires U.S. automobile manufacturers to disclose certain pricing and
61
+ equipment information?
62
+ - source_sentence: Under the Insurance Act, Chubb's Bermuda domiciled subsidiaries
63
+ are prohibited from declaring or paying any dividends of more than 25 percent
64
+ of total statutory capital and surplus, as shown in its previous financial year
65
+ statutory balance sheet, unless at least seven days before payment of the dividends,
66
+ it files with the BMA an affidavit signed by at least two directors of the relevant
67
+ Bermuda domiciled subsidiary (one of whom must be a director resident in Bermuda)
68
+ and by the relevant Bermuda domiciled subsidiary’s principal representative, that
69
+ it will continue to meet its required solvency margins. Furthermore, Bermuda domiciled
70
+ subsidiaries may only declare and pay a dividend from retained earnings and a
71
+ dividend or distribution from contributed surplus if it has no reasonable grounds
72
+ for believing that it is, or would after the payment be, unable to pay its liabilities
73
+ as they become due, or if the realizable value of its assets would be less than
74
+ the aggregate of its liabilities. In addition, Chubb's Bermuda domiciled subsidiaries
75
+ must obtain the BMA's prior approval before reducing total statutory capital,
76
+ as shown in its previous financial year's financial statements, by 15 percent
77
+ or more.
78
+ sentences:
79
+ - What are the restrictions and requirements for Bermuda domiciled subsidiaries
80
+ regarding the distribution of dividends under the Insurance Act?
81
+ - What section deals with financial statements and supplementary data?
82
+ - What measures has the company implemented to ensure workplace safety?
83
+ pipeline_tag: sentence-similarity
84
+ model-index:
85
+ - name: BGE small Financial Matryoshka
86
+ results:
87
+ - task:
88
+ type: information-retrieval
89
+ name: Information Retrieval
90
+ dataset:
91
+ name: dim 768
92
+ type: dim_768
93
+ metrics:
94
+ - type: cosine_accuracy@1
95
+ value: 0.7042857142857143
96
+ name: Cosine Accuracy@1
97
+ - type: cosine_accuracy@3
98
+ value: 0.8457142857142858
99
+ name: Cosine Accuracy@3
100
+ - type: cosine_accuracy@5
101
+ value: 0.88
102
+ name: Cosine Accuracy@5
103
+ - type: cosine_accuracy@10
104
+ value: 0.9242857142857143
105
+ name: Cosine Accuracy@10
106
+ - type: cosine_precision@1
107
+ value: 0.7042857142857143
108
+ name: Cosine Precision@1
109
+ - type: cosine_precision@3
110
+ value: 0.28190476190476194
111
+ name: Cosine Precision@3
112
+ - type: cosine_precision@5
113
+ value: 0.176
114
+ name: Cosine Precision@5
115
+ - type: cosine_precision@10
116
+ value: 0.09242857142857142
117
+ name: Cosine Precision@10
118
+ - type: cosine_recall@1
119
+ value: 0.7042857142857143
120
+ name: Cosine Recall@1
121
+ - type: cosine_recall@3
122
+ value: 0.8457142857142858
123
+ name: Cosine Recall@3
124
+ - type: cosine_recall@5
125
+ value: 0.88
126
+ name: Cosine Recall@5
127
+ - type: cosine_recall@10
128
+ value: 0.9242857142857143
129
+ name: Cosine Recall@10
130
+ - type: cosine_ndcg@10
131
+ value: 0.8153543862763872
132
+ name: Cosine Ndcg@10
133
+ - type: cosine_mrr@10
134
+ value: 0.7803667800453513
135
+ name: Cosine Mrr@10
136
+ - type: cosine_map@100
137
+ value: 0.7829122109320609
138
+ name: Cosine Map@100
139
+ - task:
140
+ type: information-retrieval
141
+ name: Information Retrieval
142
+ dataset:
143
+ name: dim 512
144
+ type: dim_512
145
+ metrics:
146
+ - type: cosine_accuracy@1
147
+ value: 0.7057142857142857
148
+ name: Cosine Accuracy@1
149
+ - type: cosine_accuracy@3
150
+ value: 0.8471428571428572
151
+ name: Cosine Accuracy@3
152
+ - type: cosine_accuracy@5
153
+ value: 0.8685714285714285
154
+ name: Cosine Accuracy@5
155
+ - type: cosine_accuracy@10
156
+ value: 0.9242857142857143
157
+ name: Cosine Accuracy@10
158
+ - type: cosine_precision@1
159
+ value: 0.7057142857142857
160
+ name: Cosine Precision@1
161
+ - type: cosine_precision@3
162
+ value: 0.28238095238095234
163
+ name: Cosine Precision@3
164
+ - type: cosine_precision@5
165
+ value: 0.17371428571428568
166
+ name: Cosine Precision@5
167
+ - type: cosine_precision@10
168
+ value: 0.09242857142857142
169
+ name: Cosine Precision@10
170
+ - type: cosine_recall@1
171
+ value: 0.7057142857142857
172
+ name: Cosine Recall@1
173
+ - type: cosine_recall@3
174
+ value: 0.8471428571428572
175
+ name: Cosine Recall@3
176
+ - type: cosine_recall@5
177
+ value: 0.8685714285714285
178
+ name: Cosine Recall@5
179
+ - type: cosine_recall@10
180
+ value: 0.9242857142857143
181
+ name: Cosine Recall@10
182
+ - type: cosine_ndcg@10
183
+ value: 0.815124112835889
184
+ name: Cosine Ndcg@10
185
+ - type: cosine_mrr@10
186
+ value: 0.7802040816326532
187
+ name: Cosine Mrr@10
188
+ - type: cosine_map@100
189
+ value: 0.7828080021041772
190
+ name: Cosine Map@100
191
+ - task:
192
+ type: information-retrieval
193
+ name: Information Retrieval
194
+ dataset:
195
+ name: dim 384
196
+ type: dim_384
197
+ metrics:
198
+ - type: cosine_accuracy@1
199
+ value: 0.7071428571428572
200
+ name: Cosine Accuracy@1
201
+ - type: cosine_accuracy@3
202
+ value: 0.8385714285714285
203
+ name: Cosine Accuracy@3
204
+ - type: cosine_accuracy@5
205
+ value: 0.8757142857142857
206
+ name: Cosine Accuracy@5
207
+ - type: cosine_accuracy@10
208
+ value: 0.9228571428571428
209
+ name: Cosine Accuracy@10
210
+ - type: cosine_precision@1
211
+ value: 0.7071428571428572
212
+ name: Cosine Precision@1
213
+ - type: cosine_precision@3
214
+ value: 0.27952380952380956
215
+ name: Cosine Precision@3
216
+ - type: cosine_precision@5
217
+ value: 0.17514285714285713
218
+ name: Cosine Precision@5
219
+ - type: cosine_precision@10
220
+ value: 0.09228571428571428
221
+ name: Cosine Precision@10
222
+ - type: cosine_recall@1
223
+ value: 0.7071428571428572
224
+ name: Cosine Recall@1
225
+ - type: cosine_recall@3
226
+ value: 0.8385714285714285
227
+ name: Cosine Recall@3
228
+ - type: cosine_recall@5
229
+ value: 0.8757142857142857
230
+ name: Cosine Recall@5
231
+ - type: cosine_recall@10
232
+ value: 0.9228571428571428
233
+ name: Cosine Recall@10
234
+ - type: cosine_ndcg@10
235
+ value: 0.815223056195625
236
+ name: Cosine Ndcg@10
237
+ - type: cosine_mrr@10
238
+ value: 0.7808248299319727
239
+ name: Cosine Mrr@10
240
+ - type: cosine_map@100
241
+ value: 0.7833488292208493
242
+ name: Cosine Map@100
243
+ ---
244
+
245
+ # BGE small Financial Matryoshka
246
+
247
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
248
+
249
+ ## Model Details
250
+
251
+ ### Model Description
252
+ - **Model Type:** Sentence Transformer
253
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
254
+ - **Maximum Sequence Length:** 512 tokens
255
+ - **Output Dimensionality:** 768 tokens
256
+ - **Similarity Function:** Cosine Similarity
257
+ <!-- - **Training Dataset:** Unknown -->
258
+ - **Language:** en
259
+ - **License:** apache-2.0
260
+
261
+ ### Model Sources
262
+
263
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
264
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
265
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
266
+
267
+ ### Full Model Architecture
268
+
269
+ ```
270
+ SentenceTransformer(
271
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
272
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
273
+ (2): Normalize()
274
+ )
275
+ ```
276
+
277
+ ## Usage
278
+
279
+ ### Direct Usage (Sentence Transformers)
280
+
281
+ First install the Sentence Transformers library:
282
+
283
+ ```bash
284
+ pip install -U sentence-transformers
285
+ ```
286
+
287
+ Then you can load this model and run inference.
288
+ ```python
289
+ from sentence_transformers import SentenceTransformer
290
+
291
+ # Download from the 🤗 Hub
292
+ model = SentenceTransformer("haophancs/bge-base-financial-matryoshka")
293
+ # Run inference
294
+ sentences = [
295
+ "Under the Insurance Act, Chubb's Bermuda domiciled subsidiaries are prohibited from declaring or paying any dividends of more than 25 percent of total statutory capital and surplus, as shown in its previous financial year statutory balance sheet, unless at least seven days before payment of the dividends, it files with the BMA an affidavit signed by at least two directors of the relevant Bermuda domiciled subsidiary (one of whom must be a director resident in Bermuda) and by the relevant Bermuda domiciled subsidiary’s principal representative, that it will continue to meet its required solvency margins. Furthermore, Bermuda domiciled subsidiaries may only declare and pay a dividend from retained earnings and a dividend or distribution from contributed surplus if it has no reasonable grounds for believing that it is, or would after the payment be, unable to pay its liabilities as they become due, or if the realizable value of its assets would be less than the aggregate of its liabilities. In addition, Chubb's Bermuda domiciled subsidiaries must obtain the BMA's prior approval before reducing total statutory capital, as shown in its previous financial year's financial statements, by 15 percent or more.",
296
+ 'What are the restrictions and requirements for Bermuda domiciled subsidiaries regarding the distribution of dividends under the Insurance Act?',
297
+ 'What section deals with financial statements and supplementary data?',
298
+ ]
299
+ embeddings = model.encode(sentences)
300
+ print(embeddings.shape)
301
+ # [3, 768]
302
+
303
+ # Get the similarity scores for the embeddings
304
+ similarities = model.similarity(embeddings, embeddings)
305
+ print(similarities.shape)
306
+ # [3, 3]
307
+ ```
308
+
309
+ <!--
310
+ ### Direct Usage (Transformers)
311
+
312
+ <details><summary>Click to see the direct usage in Transformers</summary>
313
+
314
+ </details>
315
+ -->
316
+
317
+ <!--
318
+ ### Downstream Usage (Sentence Transformers)
319
+
320
+ You can finetune this model on your own dataset.
321
+
322
+ <details><summary>Click to expand</summary>
323
+
324
+ </details>
325
+ -->
326
+
327
+ <!--
328
+ ### Out-of-Scope Use
329
+
330
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
331
+ -->
332
+
333
+ ## Evaluation
334
+
335
+ ### Metrics
336
+
337
+ #### Information Retrieval
338
+ * Dataset: `dim_768`
339
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
340
+
341
+ | Metric | Value |
342
+ |:--------------------|:-----------|
343
+ | cosine_accuracy@1 | 0.7043 |
344
+ | cosine_accuracy@3 | 0.8457 |
345
+ | cosine_accuracy@5 | 0.88 |
346
+ | cosine_accuracy@10 | 0.9243 |
347
+ | cosine_precision@1 | 0.7043 |
348
+ | cosine_precision@3 | 0.2819 |
349
+ | cosine_precision@5 | 0.176 |
350
+ | cosine_precision@10 | 0.0924 |
351
+ | cosine_recall@1 | 0.7043 |
352
+ | cosine_recall@3 | 0.8457 |
353
+ | cosine_recall@5 | 0.88 |
354
+ | cosine_recall@10 | 0.9243 |
355
+ | cosine_ndcg@10 | 0.8154 |
356
+ | cosine_mrr@10 | 0.7804 |
357
+ | **cosine_map@100** | **0.7829** |
358
+
359
+ #### Information Retrieval
360
+ * Dataset: `dim_512`
361
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
362
+
363
+ | Metric | Value |
364
+ |:--------------------|:-----------|
365
+ | cosine_accuracy@1 | 0.7057 |
366
+ | cosine_accuracy@3 | 0.8471 |
367
+ | cosine_accuracy@5 | 0.8686 |
368
+ | cosine_accuracy@10 | 0.9243 |
369
+ | cosine_precision@1 | 0.7057 |
370
+ | cosine_precision@3 | 0.2824 |
371
+ | cosine_precision@5 | 0.1737 |
372
+ | cosine_precision@10 | 0.0924 |
373
+ | cosine_recall@1 | 0.7057 |
374
+ | cosine_recall@3 | 0.8471 |
375
+ | cosine_recall@5 | 0.8686 |
376
+ | cosine_recall@10 | 0.9243 |
377
+ | cosine_ndcg@10 | 0.8151 |
378
+ | cosine_mrr@10 | 0.7802 |
379
+ | **cosine_map@100** | **0.7828** |
380
+
381
+ #### Information Retrieval
382
+ * Dataset: `dim_384`
383
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
384
+
385
+ | Metric | Value |
386
+ |:--------------------|:-----------|
387
+ | cosine_accuracy@1 | 0.7071 |
388
+ | cosine_accuracy@3 | 0.8386 |
389
+ | cosine_accuracy@5 | 0.8757 |
390
+ | cosine_accuracy@10 | 0.9229 |
391
+ | cosine_precision@1 | 0.7071 |
392
+ | cosine_precision@3 | 0.2795 |
393
+ | cosine_precision@5 | 0.1751 |
394
+ | cosine_precision@10 | 0.0923 |
395
+ | cosine_recall@1 | 0.7071 |
396
+ | cosine_recall@3 | 0.8386 |
397
+ | cosine_recall@5 | 0.8757 |
398
+ | cosine_recall@10 | 0.9229 |
399
+ | cosine_ndcg@10 | 0.8152 |
400
+ | cosine_mrr@10 | 0.7808 |
401
+ | **cosine_map@100** | **0.7833** |
402
+
403
+ <!--
404
+ ## Bias, Risks and Limitations
405
+
406
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
407
+ -->
408
+
409
+ <!--
410
+ ### Recommendations
411
+
412
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
413
+ -->
414
+
415
+ ## Training Details
416
+
417
+ ### Training Dataset
418
+
419
+ #### Unnamed Dataset
420
+
421
+
422
+ * Size: 6,300 training samples
423
+ * Columns: <code>positive</code> and <code>anchor</code>
424
+ * Approximate statistics based on the first 1000 samples:
425
+ | | positive | anchor |
426
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
427
+ | type | string | string |
428
+ | details | <ul><li>min: 8 tokens</li><li>mean: 45.4 tokens</li><li>max: 252 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 20.43 tokens</li><li>max: 45 tokens</li></ul> |
429
+ * Samples:
430
+ | positive | anchor |
431
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------|
432
+ | <code>In 2023, $2.2 billion or 5% was primarily related to patient co-pay assistance, cash discounts for prompt payment, distributor fees, and sales return provisions.</code> | <code>What was the amount of sales return provisions in 2023 as part of gross-to-net deductions?</code> |
433
+ | <code>Cash and cash equivalents were $21.9 billion at the end of 2023 as compared to $14.1 billion at the end of 2022, showing a $7.8 billion increase.</code> | <code>How much did cash and cash equivalents increase by the end of 2023 compared to the end of 2022?</code> |
434
+ | <code>The net increase in cash and cash equivalents for UnitedHealthcare in 2023 compared to 2022 was $72 million.</code> | <code>What was the net increase in cash and cash equivalents for UnitedHealthcare in 2023 compared to 2022?</code> |
435
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
436
+ ```json
437
+ {
438
+ "loss": "MultipleNegativesRankingLoss",
439
+ "matryoshka_dims": [
440
+ 768,
441
+ 512,
442
+ 384
443
+ ],
444
+ "matryoshka_weights": [
445
+ 1,
446
+ 1,
447
+ 1
448
+ ],
449
+ "n_dims_per_step": -1
450
+ }
451
+ ```
452
+
453
+ ### Training Hyperparameters
454
+ #### Non-Default Hyperparameters
455
+
456
+ - `eval_strategy`: epoch
457
+ - `per_device_train_batch_size`: 32
458
+ - `per_device_eval_batch_size`: 16
459
+ - `gradient_accumulation_steps`: 16
460
+ - `learning_rate`: 2e-05
461
+ - `num_train_epochs`: 4
462
+ - `lr_scheduler_type`: cosine
463
+ - `warmup_ratio`: 0.1
464
+ - `bf16`: True
465
+ - `tf32`: True
466
+ - `load_best_model_at_end`: True
467
+ - `optim`: adamw_torch_fused
468
+ - `batch_sampler`: no_duplicates
469
+
470
+ #### All Hyperparameters
471
+ <details><summary>Click to expand</summary>
472
+
473
+ - `overwrite_output_dir`: False
474
+ - `do_predict`: False
475
+ - `eval_strategy`: epoch
476
+ - `prediction_loss_only`: True
477
+ - `per_device_train_batch_size`: 32
478
+ - `per_device_eval_batch_size`: 16
479
+ - `per_gpu_train_batch_size`: None
480
+ - `per_gpu_eval_batch_size`: None
481
+ - `gradient_accumulation_steps`: 16
482
+ - `eval_accumulation_steps`: None
483
+ - `learning_rate`: 2e-05
484
+ - `weight_decay`: 0.0
485
+ - `adam_beta1`: 0.9
486
+ - `adam_beta2`: 0.999
487
+ - `adam_epsilon`: 1e-08
488
+ - `max_grad_norm`: 1.0
489
+ - `num_train_epochs`: 4
490
+ - `max_steps`: -1
491
+ - `lr_scheduler_type`: cosine
492
+ - `lr_scheduler_kwargs`: {}
493
+ - `warmup_ratio`: 0.1
494
+ - `warmup_steps`: 0
495
+ - `log_level`: passive
496
+ - `log_level_replica`: warning
497
+ - `log_on_each_node`: True
498
+ - `logging_nan_inf_filter`: True
499
+ - `save_safetensors`: True
500
+ - `save_on_each_node`: False
501
+ - `save_only_model`: False
502
+ - `restore_callback_states_from_checkpoint`: False
503
+ - `no_cuda`: False
504
+ - `use_cpu`: False
505
+ - `use_mps_device`: False
506
+ - `seed`: 42
507
+ - `data_seed`: None
508
+ - `jit_mode_eval`: False
509
+ - `use_ipex`: False
510
+ - `bf16`: True
511
+ - `fp16`: False
512
+ - `fp16_opt_level`: O1
513
+ - `half_precision_backend`: auto
514
+ - `bf16_full_eval`: False
515
+ - `fp16_full_eval`: False
516
+ - `tf32`: True
517
+ - `local_rank`: 0
518
+ - `ddp_backend`: None
519
+ - `tpu_num_cores`: None
520
+ - `tpu_metrics_debug`: False
521
+ - `debug`: []
522
+ - `dataloader_drop_last`: False
523
+ - `dataloader_num_workers`: 0
524
+ - `dataloader_prefetch_factor`: None
525
+ - `past_index`: -1
526
+ - `disable_tqdm`: False
527
+ - `remove_unused_columns`: True
528
+ - `label_names`: None
529
+ - `load_best_model_at_end`: True
530
+ - `ignore_data_skip`: False
531
+ - `fsdp`: []
532
+ - `fsdp_min_num_params`: 0
533
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
534
+ - `fsdp_transformer_layer_cls_to_wrap`: None
535
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
536
+ - `deepspeed`: None
537
+ - `label_smoothing_factor`: 0.0
538
+ - `optim`: adamw_torch_fused
539
+ - `optim_args`: None
540
+ - `adafactor`: False
541
+ - `group_by_length`: False
542
+ - `length_column_name`: length
543
+ - `ddp_find_unused_parameters`: None
544
+ - `ddp_bucket_cap_mb`: None
545
+ - `ddp_broadcast_buffers`: False
546
+ - `dataloader_pin_memory`: True
547
+ - `dataloader_persistent_workers`: False
548
+ - `skip_memory_metrics`: True
549
+ - `use_legacy_prediction_loop`: False
550
+ - `push_to_hub`: False
551
+ - `resume_from_checkpoint`: None
552
+ - `hub_model_id`: None
553
+ - `hub_strategy`: every_save
554
+ - `hub_private_repo`: False
555
+ - `hub_always_push`: False
556
+ - `gradient_checkpointing`: False
557
+ - `gradient_checkpointing_kwargs`: None
558
+ - `include_inputs_for_metrics`: False
559
+ - `eval_do_concat_batches`: True
560
+ - `fp16_backend`: auto
561
+ - `push_to_hub_model_id`: None
562
+ - `push_to_hub_organization`: None
563
+ - `mp_parameters`:
564
+ - `auto_find_batch_size`: False
565
+ - `full_determinism`: False
566
+ - `torchdynamo`: None
567
+ - `ray_scope`: last
568
+ - `ddp_timeout`: 1800
569
+ - `torch_compile`: False
570
+ - `torch_compile_backend`: None
571
+ - `torch_compile_mode`: None
572
+ - `dispatch_batches`: None
573
+ - `split_batches`: None
574
+ - `include_tokens_per_second`: False
575
+ - `include_num_input_tokens_seen`: False
576
+ - `neftune_noise_alpha`: None
577
+ - `optim_target_modules`: None
578
+ - `batch_eval_metrics`: False
579
+ - `batch_sampler`: no_duplicates
580
+ - `multi_dataset_batch_sampler`: proportional
581
+
582
+ </details>
583
+
584
+ ### Training Logs
585
+ | Epoch | Step | Training Loss | dim_384_cosine_map@100 | dim_512_cosine_map@100 | dim_768_cosine_map@100 |
586
+ |:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|
587
+ | 0.8122 | 10 | 0.8256 | - | - | - |
588
+ | 0.9746 | 12 | - | 0.7719 | 0.7679 | 0.7652 |
589
+ | 1.6244 | 20 | 0.2984 | - | - | - |
590
+ | 1.9492 | 24 | - | 0.7784 | 0.7810 | 0.7791 |
591
+ | 2.4365 | 30 | 0.201 | - | - | - |
592
+ | 2.9239 | 36 | - | 0.7835 | 0.7832 | 0.7828 |
593
+ | 3.2487 | 40 | 0.1705 | - | - | - |
594
+ | **3.8985** | **48** | **-** | **0.7833** | **0.7828** | **0.7829** |
595
+
596
+ * The bold row denotes the saved checkpoint.
597
+
598
+ ### Framework Versions
599
+ - Python: 3.12.2
600
+ - Sentence Transformers: 3.0.1
601
+ - Transformers: 4.41.2
602
+ - PyTorch: 2.2.0+cu121
603
+ - Accelerate: 0.31.0
604
+ - Datasets: 2.19.1
605
+ - Tokenizers: 0.19.1
606
+
607
+ ## Citation
608
+
609
+ ### BibTeX
610
+
611
+ #### Sentence Transformers
612
+ ```bibtex
613
+ @inproceedings{reimers-2019-sentence-bert,
614
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
615
+ author = "Reimers, Nils and Gurevych, Iryna",
616
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
617
+ month = "11",
618
+ year = "2019",
619
+ publisher = "Association for Computational Linguistics",
620
+ url = "https://arxiv.org/abs/1908.10084",
621
+ }
622
+ ```
623
+
624
+ #### MatryoshkaLoss
625
+ ```bibtex
626
+ @misc{kusupati2024matryoshka,
627
+ title={Matryoshka Representation Learning},
628
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
629
+ year={2024},
630
+ eprint={2205.13147},
631
+ archivePrefix={arXiv},
632
+ primaryClass={cs.LG}
633
+ }
634
+ ```
635
+
636
+ #### MultipleNegativesRankingLoss
637
+ ```bibtex
638
+ @misc{henderson2017efficient,
639
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
640
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
641
+ year={2017},
642
+ eprint={1705.00652},
643
+ archivePrefix={arXiv},
644
+ primaryClass={cs.CL}
645
+ }
646
+ ```
647
+
648
+ <!--
649
+ ## Glossary
650
+
651
+ *Clearly define terms in order to be accessible across audiences.*
652
+ -->
653
+
654
+ <!--
655
+ ## Model Card Authors
656
+
657
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
658
+ -->
659
+
660
+ <!--
661
+ ## Model Card Contact
662
+
663
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
664
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.2.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76552a608a89f1169771a851c80253931f1ab63710d9d352f1d24c0b0389915c
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff