File size: 6,019 Bytes
02881e5
8545bfe
 
02881e5
8545bfe
 
 
 
 
02881e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec4cbd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# ImageBind Models (@ `./checkpoints`):
  - [imagebind_huge.pth](.checkpoints/imagebind_huge.pth)
  - [model.safetensors](.checkpoints/model.safetensors)
  - OpenVino Intermediate Representation Models:
    - [Text](.checkpoints/text)
    - [Vision](.checkpoints/vision)
    - [Audio](.checkpoints/audio)
    - [Thermal](.checkpoints/thermal)
    - [Depth](.checkpoints/depth)
    - [ ] TODO: IMU
    - [ ] TODO: Video

### Updated training assets in `.assets`; thermal and depth need to be converted into greyscale
```py
import torchvision.transforms as transforms

# Define a transform to convert RGB images to single-channel
to_single_channel = transforms.Compose([
    transforms.Grayscale(num_output_channels=1),
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
])

inputs = {
    ModalityType.TEXT: data.load_and_transform_text(texts, device),
    ModalityType.VISION: data.load_and_transform_vision_data(image_paths, device),
    ModalityType.AUDIO: data.load_and_transform_audio_data(audio_paths, device),
    ModalityType.DEPTH: torch.stack([to_single_channel(Image.open(path)) for path in depth_paths]).to(device),
    ModalityType.THERMAL: torch.stack([to_single_channel(Image.open(path)) for path in thermal_paths]).to(device),
}
...
```

# === Original: ===

# ImageBind: One Embedding Space To Bind Them All

**[FAIR, Meta AI](https://ai.facebook.com/research/)** 

Rohit Girdhar*,
Alaaeldin El-Nouby*,
Zhuang Liu,
Mannat Singh,
Kalyan Vasudev Alwala,
Armand Joulin,
Ishan Misra*

To appear at CVPR 2023 (*Highlighted paper*)

[[`Paper`](https://facebookresearch.github.io/ImageBind/paper)] [[`Blog`](https://ai.facebook.com/blog/imagebind-six-modalities-binding-ai/)] [[`Demo`](https://imagebind.metademolab.com/)] [[`Supplementary Video`](https://dl.fbaipublicfiles.com/imagebind/imagebind_video.mp4)] [[`BibTex`](#citing-imagebind)]

PyTorch implementation and pretrained models for ImageBind. For details, see the paper: **[ImageBind: One Embedding Space To Bind Them All](https://facebookresearch.github.io/ImageBind/paper)**.

ImageBind learns a joint embedding across six different modalities - images, text, audio, depth, thermal, and IMU data. It enables novel emergent applications ‘out-of-the-box’ including cross-modal retrieval, composing modalities with arithmetic, cross-modal detection and generation.



![ImageBind](https://user-images.githubusercontent.com/8495451/236859695-ffa13364-3e39-4d99-a8da-fbfab17f9a6b.gif)

## ImageBind model

Emergent zero-shot classification performance.

<table style="margin: auto">
  <tr>
    <th>Model</th>
    <th><span style="color:blue">IN1k</span></th>
    <th><span style="color:purple">K400</span></th>
    <th><span style="color:green">NYU-D</span></th>
    <th><span style="color:LightBlue">ESC</span></th>
    <th><span style="color:orange">LLVIP</span></th>
    <th><span style="color:purple">Ego4D</span></th>
    <th>download</th>
  </tr>
  <tr>
    <td>imagebind_huge</td>
    <td align="right">77.7</td>
    <td align="right">50.0</td>
    <td align="right">54.0</td>
    <td align="right">66.9</td>
    <td align="right">63.4</td>
    <td align="right">25.0</td>
    <td><a href="https://dl.fbaipublicfiles.com/imagebind/imagebind_huge.pth">checkpoint</a></td>
  </tr>
  
</table>

## Usage

Install pytorch 1.13+ and other 3rd party dependencies.

```shell
conda create --name imagebind python=3.10 -y
conda activate imagebind

pip install .
```

For windows users, you might need to install `soundfile` for reading/writing audio files. (Thanks @congyue1977)

```
pip install soundfile
```


Extract and compare features across modalities (e.g. Image, Text and Audio).

```python
from imagebind import data
import torch
from imagebind.models import imagebind_model
from imagebind.models.imagebind_model import ModalityType

text_list=["A dog.", "A car", "A bird"]
image_paths=[".assets/dog_image.jpg", ".assets/car_image.jpg", ".assets/bird_image.jpg"]
audio_paths=[".assets/dog_audio.wav", ".assets/car_audio.wav", ".assets/bird_audio.wav"]

device = "cuda:0" if torch.cuda.is_available() else "cpu"

# Instantiate model
model = imagebind_model.imagebind_huge(pretrained=True)
model.eval()
model.to(device)

# Load data
inputs = {
    ModalityType.TEXT: data.load_and_transform_text(text_list, device),
    ModalityType.VISION: data.load_and_transform_vision_data(image_paths, device),
    ModalityType.AUDIO: data.load_and_transform_audio_data(audio_paths, device),
}

with torch.no_grad():
    embeddings = model(inputs)

print(
    "Vision x Text: ",
    torch.softmax(embeddings[ModalityType.VISION] @ embeddings[ModalityType.TEXT].T, dim=-1),
)
print(
    "Audio x Text: ",
    torch.softmax(embeddings[ModalityType.AUDIO] @ embeddings[ModalityType.TEXT].T, dim=-1),
)
print(
    "Vision x Audio: ",
    torch.softmax(embeddings[ModalityType.VISION] @ embeddings[ModalityType.AUDIO].T, dim=-1),
)

# Expected output:
#
# Vision x Text:
# tensor([[9.9761e-01, 2.3694e-03, 1.8612e-05],
#         [3.3836e-05, 9.9994e-01, 2.4118e-05],
#         [4.7997e-05, 1.3496e-02, 9.8646e-01]])
#
# Audio x Text:
# tensor([[1., 0., 0.],
#         [0., 1., 0.],
#         [0., 0., 1.]])
#
# Vision x Audio:
# tensor([[0.8070, 0.1088, 0.0842],
#         [0.1036, 0.7884, 0.1079],
#         [0.0018, 0.0022, 0.9960]])

```

## Model card
Please see the [model card](model_card.md) for details.

## License

ImageBind code and model weights are released under the CC-BY-NC 4.0 license. See [LICENSE](LICENSE) for additional details.

## Contributing

See [contributing](CONTRIBUTING.md) and the [code of conduct](CODE_OF_CONDUCT.md).

## Citing ImageBind

If you find this repository useful, please consider giving a star :star: and citation

```
@inproceedings{girdhar2023imagebind,
  title={ImageBind: One Embedding Space To Bind Them All},
  author={Girdhar, Rohit and El-Nouby, Alaaeldin and Liu, Zhuang
and Singh, Mannat and Alwala, Kalyan Vasudev and Joulin, Armand and Misra, Ishan},
  booktitle={CVPR},
  year={2023}
}
```