File size: 9,478 Bytes
7e213c7 1ee6e4c 7e213c7 9a9c0d0 7e213c7 7629c95 7e213c7 5808c9b 7629c95 5808c9b 7629c95 fb2212a 5808c9b 08f1526 5808c9b 08f1526 7e213c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\dslee\\AppData\\Roaming\\Python\\Python38\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
}
],
"source": [
"from model import DACConfig, DAC"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# Registering a model with custom code to the auto classes\n",
"DACConfig.register_for_auto_class()\n",
"DAC.register_for_auto_class()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\dslee\\AppData\\Roaming\\Python\\Python38\\site-packages\\audiotools\\ml\\layers\\base.py:172: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.\n",
" model_dict = torch.load(location, \"cpu\")\n",
"c:\\Users\\dslee\\anaconda3\\envs\\sound_effect_variation_generation\\lib\\site-packages\\torch\\nn\\utils\\weight_norm.py:134: FutureWarning: `torch.nn.utils.weight_norm` is deprecated in favor of `torch.nn.utils.parametrizations.weight_norm`.\n",
" WeightNorm.apply(module, name, dim)\n"
]
}
],
"source": [
"# create instances\n",
"config = DACConfig(model_type_by_sampling_freq='44khz')\n",
"model = DAC(config)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\dslee\\anaconda3\\envs\\sound_effect_variation_generation\\lib\\site-packages\\huggingface_hub\\file_download.py:159: UserWarning: `huggingface_hub` cache-system uses symlinks by default to efficiently store duplicated files but your machine does not support them in C:\\Users\\dslee\\.cache\\huggingface\\hub\\models--hance-ai--descript-audio-codec. Caching files will still work but in a degraded version that might require more space on your disk. This warning can be disabled by setting the `HF_HUB_DISABLE_SYMLINKS_WARNING` environment variable. For more details, see https://huggingface.co/docs/huggingface_hub/how-to-cache#limitations.\n",
"To support symlinks on Windows, you either need to activate Developer Mode or to run Python as an administrator. In order to see activate developer mode, see this article: https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development\n",
" warnings.warn(message)\n",
"model.safetensors: 100%|ββββββββββ| 307M/307M [00:12<00:00, 24.8MB/s] \n"
]
},
{
"data": {
"text/plain": [
"CommitInfo(commit_url='https://huggingface.co/hance-ai/descript-audio-codec/commit/2e9807d42634ebe9ad4e996fd92b5125e1690bec', commit_message='Upload DAC', commit_description='', oid='2e9807d42634ebe9ad4e996fd92b5125e1690bec', pr_url=None, pr_revision=None, pr_num=None)"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# push the model to the huggingface\n",
"with open('token.txt', 'r') as file:\n",
" token = file.read().strip()\n",
"\n",
"model.push_to_hub('hance-ai/descript-audio-codec-44khz', token=token) # put your token"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Recommend git fetching and pulling so that the uploaded model is synced locally too."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"***"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\dslee\\AppData\\Roaming\\Python\\Python38\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n",
"c:\\Users\\dslee\\anaconda3\\envs\\sound_effect_variation_generation\\lib\\site-packages\\huggingface_hub\\file_download.py:159: UserWarning: `huggingface_hub` cache-system uses symlinks by default to efficiently store duplicated files but your machine does not support them in C:\\Users\\dslee\\.cache\\huggingface\\hub\\models--hance-ai--descript-audio-codec-44khz. Caching files will still work but in a degraded version that might require more space on your disk. This warning can be disabled by setting the `HF_HUB_DISABLE_SYMLINKS_WARNING` environment variable. For more details, see https://huggingface.co/docs/huggingface_hub/how-to-cache#limitations.\n",
"To support symlinks on Windows, you either need to activate Developer Mode or to run Python as an administrator. In order to see activate developer mode, see this article: https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development\n",
" warnings.warn(message)\n",
"A new version of the following files was downloaded from https://huggingface.co/hance-ai/descript-audio-codec-44khz:\n",
"- model.py\n",
". Make sure to double-check they do not contain any added malicious code. To avoid downloading new versions of the code file, you can pin a revision.\n",
"C:\\Users\\dslee\\AppData\\Roaming\\Python\\Python38\\site-packages\\audiotools\\ml\\layers\\base.py:172: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.\n",
" model_dict = torch.load(location, \"cpu\")\n",
"c:\\Users\\dslee\\anaconda3\\envs\\sound_effect_variation_generation\\lib\\site-packages\\torch\\nn\\utils\\weight_norm.py:134: FutureWarning: `torch.nn.utils.weight_norm` is deprecated in favor of `torch.nn.utils.parametrizations.weight_norm`.\n",
" WeightNorm.apply(module, name, dim)\n"
]
}
],
"source": [
"# load the uploaded model\n",
"from transformers import AutoModel\n",
"model = AutoModel.from_pretrained('hance-ai/descript-audio-codec-44khz', trust_remote_code=True)\n",
"model.to('cpu');"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"zq.shape: torch.Size([1, 1024, 862])\n",
"s.shape: torch.Size([1, 9, 862])\n"
]
}
],
"source": [
"# encodeing\n",
"import os\n",
"from pathlib import Path\n",
"\n",
"fname = str(Path(os.getcwd()).joinpath('.sample_sound', 'jazz_swing.wav'))\n",
"zq, s = model.encode(fname)\n",
"print('zq.shape:', zq.shape)\n",
"print('s.shape:', s.shape)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"waveform.shape: torch.Size([1, 1, 441344])\n"
]
}
],
"source": [
"# decoding (from zq -- discrete latent vectors)\n",
"waveform = model.decode(zq=zq)\n",
"print('waveform.shape:', waveform.shape)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "sound_effect_variation_generation",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.19"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|