habdine commited on
Commit
b5859be
·
verified ·
1 Parent(s): 48cd196

Upload code

Browse files
Files changed (1) hide show
  1. modeling_prot2text.py +0 -13
modeling_prot2text.py CHANGED
@@ -123,11 +123,7 @@ class Prot2TextModel(PreTrainedModel):
123
 
124
  @torch.no_grad()
125
  def generate_protein_description(self,
126
- protein_pdbID=None,
127
  protein_sequence=None,
128
- edge_index: Optional[torch.LongTensor] = None,
129
- x: Optional[torch.FloatTensor] = None,
130
- edge_type: Optional[torch.LongTensor] = None,
131
  tokenizer=None,
132
  device='cpu'
133
  ):
@@ -136,17 +132,8 @@ class Prot2TextModel(PreTrainedModel):
136
  raise ValueError(
137
  "The model you are trying to use is based only on protein sequence, please provide an amino-acid protein_sequence"
138
  )
139
- if self.config.rgcn and protein_pdbID==None and (x==None or edge_index==None or edge_type==None):
140
- raise ValueError(
141
- "The model you are trying to use is based on protein structure, please provide a AlphaFold ID (you must have to have internet connection using protein_pdbID, or provide the triplet inputs: x (node features), edge_index and edge_type"
142
- )
143
  if self.config.esm:
144
  esmtokenizer = AutoTokenizer.from_pretrained(self.config.esm_model_name)
145
-
146
- if protein_pdbID==None and protein_sequence==None:
147
- raise ValueError(
148
- "you need to provide either a protein AlphaFold Id or an amino-acid sequence"
149
- )
150
 
151
 
152
  seq = esmtokenizer([protein_sequence], add_special_tokens=True, truncation=True, max_length=1021, padding='max_length', return_tensors="pt")
 
123
 
124
  @torch.no_grad()
125
  def generate_protein_description(self,
 
126
  protein_sequence=None,
 
 
 
127
  tokenizer=None,
128
  device='cpu'
129
  ):
 
132
  raise ValueError(
133
  "The model you are trying to use is based only on protein sequence, please provide an amino-acid protein_sequence"
134
  )
 
 
 
 
135
  if self.config.esm:
136
  esmtokenizer = AutoTokenizer.from_pretrained(self.config.esm_model_name)
 
 
 
 
 
137
 
138
 
139
  seq = esmtokenizer([protein_sequence], add_special_tokens=True, truncation=True, max_length=1021, padding='max_length', return_tensors="pt")