File size: 5,974 Bytes
de38ea9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14ba8a9
de38ea9
 
14ba8a9
de38ea9
14ba8a9
 
 
 
 
 
 
de38ea9
 
14ba8a9
de38ea9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14ba8a9
de38ea9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14ba8a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de38ea9
 
 
 
 
 
14ba8a9
de38ea9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---
license: apache-2.0
base_model: hZzy/qwen2.5-0.5b-sft-news-IFT
tags:
- trl
- expo
- generated_from_trainer
model-index:
- name: qwen2.5-0.5b-expo-L2EXPO-ES-0.1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/zhiyuzha-university-of-florida/huggingface/runs/a4jed762)
# qwen2.5-0.5b-expo-L2EXPO-ES-0.1

This model is a fine-tuned version of [hZzy/qwen2.5-0.5b-sft-news-IFT](https://huggingface.co/hZzy/qwen2.5-0.5b-sft-news-IFT) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6428
- Logps: -79.5818
- Logits: -0.6068
- Objective: 0.6266
- Dpo Loss: 0.7211
- Regularize: 0.6266
- Ranking Simple: 0.5316
- Ranking Idealized: 0.6030
- Ranking Idealized Expo: 0.5223
- Wo Beta: 14.3406

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 12
- total_train_batch_size: 144
- total_eval_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Logps    | Logits  | Objective | Dpo Loss | Regularize | Ranking Simple | Ranking Idealized | Ranking Idealized Expo | Wo Beta |
|:-------------:|:------:|:----:|:---------------:|:--------:|:-------:|:---------:|:--------:|:----------:|:--------------:|:-----------------:|:----------------------:|:-------:|
| 0.4017        | 0.1417 | 50   | 0.4165          | -93.1726 | -1.5024 | 0.4149    | 0.6868   | 0.4149     | 0.5259         | 0.6030            | 0.5223                 | 16.4267 |
| 0.3777        | 0.2834 | 100  | 0.4360          | -92.8653 | -1.4775 | 0.4269    | 0.6818   | 0.4269     | 0.5316         | 0.6030            | 0.5223                 | 16.2439 |
| 0.4057        | 0.4251 | 150  | 0.4911          | -84.1774 | -1.2946 | 0.4805    | 0.6897   | 0.4805     | 0.5383         | 0.6030            | 0.5223                 | 15.6306 |
| 0.4475        | 0.5668 | 200  | 0.5660          | -89.7342 | -0.9897 | 0.5515    | 0.7103   | 0.5515     | 0.5316         | 0.6030            | 0.5223                 | 15.1280 |
| 0.455         | 0.7085 | 250  | 0.5978          | -78.1917 | -1.0033 | 0.5822    | 0.7171   | 0.5822     | 0.5311         | 0.6030            | 0.5223                 | 14.6763 |
| 0.4337        | 0.8503 | 300  | 0.5993          | -78.8918 | -0.6761 | 0.5779    | 0.7105   | 0.5779     | 0.5300         | 0.6030            | 0.5223                 | 14.9196 |
| 0.4039        | 0.9920 | 350  | 0.5978          | -75.1520 | -0.7968 | 0.5765    | 0.7078   | 0.5765     | 0.5290         | 0.6030            | 0.5223                 | 14.6531 |
| 0.3729        | 1.1337 | 400  | 0.6180          | -75.1433 | -0.5569 | 0.6000    | 0.7153   | 0.6000     | 0.5228         | 0.6030            | 0.5223                 | 14.6471 |
| 0.3454        | 1.2754 | 450  | 0.6316          | -76.2289 | -0.6214 | 0.6131    | 0.7165   | 0.6131     | 0.5336         | 0.6030            | 0.5223                 | 14.5034 |
| 0.3226        | 1.4171 | 500  | 0.6255          | -77.6040 | -0.5608 | 0.6084    | 0.7204   | 0.6084     | 0.5285         | 0.6030            | 0.5223                 | 14.4998 |
| 0.3133        | 1.5588 | 550  | 0.6282          | -78.6291 | -0.6736 | 0.6138    | 0.7139   | 0.6138     | 0.5336         | 0.6030            | 0.5223                 | 14.4069 |
| 0.2944        | 1.7005 | 600  | 0.6321          | -78.9179 | -0.5620 | 0.6139    | 0.7175   | 0.6139     | 0.5357         | 0.6030            | 0.5223                 | 14.6142 |
| 0.2915        | 1.8422 | 650  | 0.6321          | -77.4437 | -0.7021 | 0.6157    | 0.7138   | 0.6157     | 0.5367         | 0.6030            | 0.5223                 | 14.3858 |
| 0.2675        | 1.9839 | 700  | 0.6386          | -79.3600 | -0.5612 | 0.6233    | 0.7185   | 0.6233     | 0.5290         | 0.6030            | 0.5223                 | 14.3171 |
| 0.2415        | 2.1256 | 750  | 0.6405          | -80.0990 | -0.6174 | 0.6263    | 0.7177   | 0.6263     | 0.5347         | 0.6030            | 0.5223                 | 14.4302 |
| 0.2263        | 2.2674 | 800  | 0.6458          | -79.3784 | -0.5665 | 0.6297    | 0.7206   | 0.6297     | 0.5347         | 0.6030            | 0.5223                 | 14.3163 |
| 0.2148        | 2.4091 | 850  | 0.6436          | -79.0806 | -0.5793 | 0.6276    | 0.7192   | 0.6276     | 0.5362         | 0.6030            | 0.5223                 | 14.4263 |
| 0.1993        | 2.5508 | 900  | 0.6454          | -80.3815 | -0.5621 | 0.6302    | 0.7217   | 0.6302     | 0.5342         | 0.6030            | 0.5223                 | 14.4491 |
| 0.1887        | 2.6925 | 950  | 0.6443          | -79.1446 | -0.6216 | 0.6274    | 0.7204   | 0.6274     | 0.5336         | 0.6030            | 0.5223                 | 14.3186 |
| 0.1764        | 2.8342 | 1000 | 0.6399          | -79.7721 | -0.6087 | 0.6246    | 0.7200   | 0.6246     | 0.5336         | 0.6030            | 0.5223                 | 14.4502 |
| 0.163         | 2.9759 | 1050 | 0.6428          | -79.5818 | -0.6068 | 0.6266    | 0.7211   | 0.6266     | 0.5316         | 0.6030            | 0.5223                 | 14.3406 |


### Framework versions

- Transformers 4.42.0
- Pytorch 2.3.0+cu121
- Datasets 3.2.0
- Tokenizers 0.19.1