File size: 9,412 Bytes
145aae2
 
 
 
672ff36
 
145aae2
 
 
672ff36
 
 
 
 
145aae2
 
 
 
 
 
 
 
 
 
 
672ff36
145aae2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
---
license: apache-2.0
base_model: hZzy/qwen2.5-0.5b-sft-news-IFT
tags:
- alignment-handbook
- ndcg
- trl
- expo
- generated_from_trainer
- trl
- expo
- generated_from_trainer
datasets:
- hZzy/train_pairwise
model-index:
- name: qwen2.5-0.5b-expo-L1EXPO
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/zhiyuzha-university-of-florida/huggingface/runs/cdsh593u)
# qwen2.5-0.5b-expo-L1EXPO

This model is a fine-tuned version of [hZzy/qwen2.5-0.5b-sft-news-IFT](https://huggingface.co/hZzy/qwen2.5-0.5b-sft-news-IFT) on the hZzy/train_pairwise dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0088
- Logps: -98.4573
- Logits: -1.9894
- Objective: 0.0088
- Dpo Loss: 0.6929
- Regularize: 0.0088
- Ranking Simple: 0.5180
- Ranking Idealized: 0.6022
- Ranking Idealized Expo: 0.5207

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-07
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 12
- total_train_batch_size: 48
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Logps    | Logits  | Objective | Dpo Loss | Regularize | Ranking Simple | Ranking Idealized | Ranking Idealized Expo |
|:-------------:|:------:|:----:|:---------------:|:--------:|:-------:|:---------:|:--------:|:----------:|:--------------:|:-----------------:|:----------------------:|
| 0.006         | 0.0472 | 50   | 0.0060          | -98.6152 | -1.9958 | 0.0061    | 0.6930   | 0.0061     | 0.5180         | 0.6022            | 0.5207                 |
| 0.0092        | 0.0945 | 100  | 0.0073          | -98.7889 | -1.9954 | 0.0073    | 0.6929   | 0.0073     | 0.5186         | 0.6022            | 0.5207                 |
| 0.0142        | 0.1417 | 150  | 0.0092          | -98.6620 | -1.9986 | 0.0093    | 0.6930   | 0.0093     | 0.5186         | 0.6022            | 0.5207                 |
| 0.0173        | 0.1890 | 200  | 0.0097          | -98.7946 | -1.9957 | 0.0098    | 0.6929   | 0.0098     | 0.5173         | 0.6022            | 0.5207                 |
| 0.0245        | 0.2362 | 250  | 0.0121          | -98.6416 | -1.9951 | 0.0121    | 0.6929   | 0.0121     | 0.5186         | 0.6022            | 0.5207                 |
| 0.0234        | 0.2834 | 300  | 0.0136          | -98.3321 | -1.9940 | 0.0140    | 0.6932   | 0.0140     | 0.5166         | 0.6022            | 0.5207                 |
| 0.0262        | 0.3307 | 350  | 0.0178          | -98.3457 | -1.9947 | 0.0181    | 0.6926   | 0.0181     | 0.5200         | 0.6022            | 0.5207                 |
| 0.0315        | 0.3779 | 400  | 0.0165          | -98.1128 | -1.9941 | 0.0164    | 0.6926   | 0.0164     | 0.5200         | 0.6022            | 0.5207                 |
| 0.0294        | 0.4252 | 450  | 0.0145          | -98.3787 | -1.9950 | 0.0148    | 0.6924   | 0.0148     | 0.5186         | 0.6022            | 0.5207                 |
| 0.032         | 0.4724 | 500  | 0.0139          | -98.6457 | -1.9920 | 0.0139    | 0.6925   | 0.0139     | 0.5193         | 0.6022            | 0.5207                 |
| 0.0314        | 0.5196 | 550  | 0.0136          | -98.9689 | -1.9943 | 0.0135    | 0.6927   | 0.0135     | 0.5186         | 0.6022            | 0.5207                 |
| 0.0311        | 0.5669 | 600  | 0.0142          | -98.1223 | -1.9968 | 0.0144    | 0.6925   | 0.0144     | 0.5186         | 0.6022            | 0.5207                 |
| 0.0333        | 0.6141 | 650  | 0.0145          | -98.6917 | -1.9935 | 0.0146    | 0.6926   | 0.0146     | 0.5180         | 0.6022            | 0.5207                 |
| 0.028         | 0.6614 | 700  | 0.0138          | -98.6777 | -1.9953 | 0.0140    | 0.6930   | 0.0140     | 0.5193         | 0.6022            | 0.5207                 |
| 0.0319        | 0.7086 | 750  | 0.0147          | -98.7712 | -1.9952 | 0.0145    | 0.6926   | 0.0145     | 0.5180         | 0.6022            | 0.5207                 |
| 0.0297        | 0.7558 | 800  | 0.0157          | -98.1348 | -1.9950 | 0.0163    | 0.6929   | 0.0163     | 0.5186         | 0.6022            | 0.5207                 |
| 0.0286        | 0.8031 | 850  | 0.0124          | -98.5940 | -1.9954 | 0.0125    | 0.6928   | 0.0125     | 0.5173         | 0.6022            | 0.5207                 |
| 0.0285        | 0.8503 | 900  | 0.0117          | -98.9422 | -1.9931 | 0.0118    | 0.6929   | 0.0118     | 0.5166         | 0.6022            | 0.5207                 |
| 0.0248        | 0.8976 | 950  | 0.0156          | -98.6447 | -1.9902 | 0.0155    | 0.6932   | 0.0155     | 0.5173         | 0.6022            | 0.5207                 |
| 0.0272        | 0.9448 | 1000 | 0.0126          | -98.1242 | -1.9906 | 0.0128    | 0.6931   | 0.0128     | 0.5180         | 0.6022            | 0.5207                 |
| 0.0215        | 0.9920 | 1050 | 0.0133          | -98.3357 | -1.9911 | 0.0135    | 0.6927   | 0.0135     | 0.5180         | 0.6022            | 0.5207                 |
| 0.0242        | 1.0393 | 1100 | 0.0128          | -98.5121 | -1.9881 | 0.0127    | 0.6927   | 0.0127     | 0.5180         | 0.6022            | 0.5207                 |
| 0.0248        | 1.0865 | 1150 | 0.0121          | -98.3740 | -1.9900 | 0.0124    | 0.6929   | 0.0124     | 0.5180         | 0.6022            | 0.5207                 |
| 0.0238        | 1.1338 | 1200 | 0.0131          | -98.6523 | -1.9881 | 0.0132    | 0.6931   | 0.0132     | 0.5186         | 0.6022            | 0.5207                 |
| 0.0213        | 1.1810 | 1250 | 0.0116          | -98.3820 | -1.9892 | 0.0118    | 0.6929   | 0.0118     | 0.5186         | 0.6022            | 0.5207                 |
| 0.0213        | 1.2282 | 1300 | 0.0101          | -98.3519 | -1.9901 | 0.0103    | 0.6930   | 0.0103     | 0.5180         | 0.6022            | 0.5207                 |
| 0.0191        | 1.2755 | 1350 | 0.0105          | -98.1708 | -1.9895 | 0.0107    | 0.6929   | 0.0107     | 0.5186         | 0.6022            | 0.5207                 |
| 0.0183        | 1.3227 | 1400 | 0.0098          | -98.2989 | -1.9896 | 0.0099    | 0.6928   | 0.0099     | 0.5180         | 0.6022            | 0.5207                 |
| 0.0173        | 1.3700 | 1450 | 0.0120          | -98.4475 | -1.9888 | 0.0120    | 0.6929   | 0.0120     | 0.5193         | 0.6022            | 0.5207                 |
| 0.0171        | 1.4172 | 1500 | 0.0093          | -98.4978 | -1.9892 | 0.0093    | 0.6929   | 0.0093     | 0.5186         | 0.6022            | 0.5207                 |
| 0.0164        | 1.4645 | 1550 | 0.0100          | -98.4887 | -1.9898 | 0.0101    | 0.6928   | 0.0101     | 0.5180         | 0.6022            | 0.5207                 |
| 0.0165        | 1.5117 | 1600 | 0.0097          | -98.4418 | -1.9892 | 0.0096    | 0.6929   | 0.0096     | 0.5186         | 0.6022            | 0.5207                 |
| 0.0128        | 1.5589 | 1650 | 0.0100          | -98.3605 | -1.9889 | 0.0101    | 0.6927   | 0.0101     | 0.5180         | 0.6022            | 0.5207                 |
| 0.0132        | 1.6062 | 1700 | 0.0090          | -98.4055 | -1.9891 | 0.0089    | 0.6928   | 0.0089     | 0.5180         | 0.6022            | 0.5207                 |
| 0.0133        | 1.6534 | 1750 | 0.0094          | -98.4174 | -1.9885 | 0.0094    | 0.6928   | 0.0094     | 0.5180         | 0.6022            | 0.5207                 |
| 0.0138        | 1.7007 | 1800 | 0.0096          | -98.3598 | -1.9886 | 0.0097    | 0.6928   | 0.0097     | 0.5180         | 0.6022            | 0.5207                 |
| 0.0122        | 1.7479 | 1850 | 0.0090          | -98.4157 | -1.9888 | 0.0091    | 0.6929   | 0.0091     | 0.5180         | 0.6022            | 0.5207                 |
| 0.0128        | 1.7951 | 1900 | 0.0089          | -98.4291 | -1.9891 | 0.0090    | 0.6929   | 0.0089     | 0.5180         | 0.6022            | 0.5207                 |
| 0.0133        | 1.8424 | 1950 | 0.0089          | -98.4530 | -1.9892 | 0.0090    | 0.6929   | 0.0090     | 0.5180         | 0.6022            | 0.5207                 |
| 0.012         | 1.8896 | 2000 | 0.0087          | -98.4584 | -1.9894 | 0.0088    | 0.6929   | 0.0088     | 0.5180         | 0.6022            | 0.5207                 |
| 0.0119        | 1.9369 | 2050 | 0.0088          | -98.4571 | -1.9894 | 0.0088    | 0.6929   | 0.0088     | 0.5180         | 0.6022            | 0.5207                 |
| 0.0116        | 1.9841 | 2100 | 0.0088          | -98.4573 | -1.9894 | 0.0088    | 0.6929   | 0.0088     | 0.5180         | 0.6022            | 0.5207                 |


### Framework versions

- Transformers 4.42.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1