File size: 4,736 Bytes
ca1e571
 
 
 
c171adf
 
ca1e571
 
 
c171adf
 
 
 
 
ca1e571
 
 
 
 
 
 
 
 
 
 
c171adf
ca1e571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
---
license: apache-2.0
base_model: hZzy/qwen2.5-0.5b-sft-news-IFT
tags:
- alignment-handbook
- ndcg
- trl
- expo
- generated_from_trainer
- trl
- expo
- generated_from_trainer
datasets:
- hZzy/train_pairwise_weighted
model-index:
- name: qwen2.5-0.5b-expo-DPO-W2-noES6-1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/zhiyuzha-university-of-florida/huggingface/runs/c6z04yeu)
# qwen2.5-0.5b-expo-DPO-W2-noES6-1

This model is a fine-tuned version of [hZzy/qwen2.5-0.5b-sft-news-IFT](https://huggingface.co/hZzy/qwen2.5-0.5b-sft-news-IFT) on the hZzy/train_pairwise_weighted dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1677
- Logps: -77.5515
- Logits: -1.0043
- Objective: 0.1588
- Regularize: 1.7957
- Ranking Simple: 0.5461
- Wo Beta: 6.9275

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 12
- total_train_batch_size: 144
- total_eval_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Logps    | Logits  | Objective | Regularize | Ranking Simple | Wo Beta |
|:-------------:|:------:|:----:|:---------------:|:--------:|:-------:|:---------:|:----------:|:--------------:|:-------:|
| 0.0717        | 0.1417 | 50   | 0.0827          | -89.4542 | -1.3980 | 0.0833    | 0.9434     | 0.5233         | 7.6909  |
| 0.0782        | 0.2834 | 100  | 0.1198          | -90.3233 | -1.3848 | 0.1299    | 1.2948     | 0.5274         | 7.5300  |
| 0.1041        | 0.4251 | 150  | 0.1430          | -80.8115 | -1.4142 | 0.1445    | 1.5652     | 0.5331         | 7.2053  |
| 0.103         | 0.5668 | 200  | 0.1575          | -79.3788 | -1.2549 | 0.1620    | 1.6985     | 0.5383         | 7.0079  |
| 0.1301        | 0.7085 | 250  | 0.1765          | -80.7283 | -1.2947 | 0.1779    | 1.9721     | 0.5373         | 7.3699  |
| 0.0929        | 0.8503 | 300  | 0.1742          | -83.1364 | -1.0915 | 0.1719    | 1.9650     | 0.5399         | 7.3246  |
| 0.092         | 0.9920 | 350  | 0.1930          | -78.9639 | -1.2151 | 0.1810    | 1.9965     | 0.5492         | 6.8384  |
| 0.0713        | 1.1337 | 400  | 0.1963          | -76.5565 | -1.1860 | 0.1929    | 2.1515     | 0.5399         | 7.1718  |
| 0.0243        | 1.2754 | 450  | 0.1856          | -78.4444 | -1.1245 | 0.1782    | 2.0181     | 0.5414         | 7.0177  |
| 0.0514        | 1.4171 | 500  | 0.1857          | -77.6606 | -1.1929 | 0.1755    | 1.9383     | 0.5393         | 6.9356  |
| 0.0577        | 1.5588 | 550  | 0.1760          | -79.1478 | -1.0419 | 0.1699    | 1.8917     | 0.5450         | 6.9556  |
| 0.0391        | 1.7005 | 600  | 0.1791          | -80.1474 | -0.8913 | 0.1668    | 1.9362     | 0.5461         | 6.8670  |
| 0.0392        | 1.8422 | 650  | 0.1726          | -78.0514 | -0.9358 | 0.1615    | 1.8093     | 0.5512         | 6.8786  |
| 0.0385        | 1.9839 | 700  | 0.1687          | -77.0163 | -1.0116 | 0.1563    | 1.8321     | 0.5471         | 6.9309  |
| 0.0198        | 2.1256 | 750  | 0.1707          | -78.2445 | -1.0465 | 0.1584    | 1.8388     | 0.5492         | 6.8687  |
| 0.0072        | 2.2674 | 800  | 0.1708          | -78.1994 | -1.0332 | 0.1614    | 1.8241     | 0.5461         | 6.8566  |
| 0.0128        | 2.4091 | 850  | 0.1695          | -77.6488 | -0.9753 | 0.1603    | 1.8026     | 0.5487         | 6.8586  |
| 0.0105        | 2.5508 | 900  | 0.1680          | -77.8885 | -1.0018 | 0.1587    | 1.8027     | 0.5461         | 6.9417  |
| 0.0111        | 2.6925 | 950  | 0.1676          | -77.6180 | -1.0011 | 0.1585    | 1.8000     | 0.5466         | 6.9417  |
| 0.0122        | 2.8342 | 1000 | 0.1676          | -77.5617 | -1.0044 | 0.1588    | 1.7963     | 0.5461         | 6.9304  |
| 0.0117        | 2.9759 | 1050 | 0.1677          | -77.5515 | -1.0043 | 0.1588    | 1.7957     | 0.5461         | 6.9275  |


### Framework versions

- Transformers 4.42.0
- Pytorch 2.3.0+cu121
- Datasets 3.2.0
- Tokenizers 0.19.1