File size: 1,667 Bytes
ea667d3 29a00ba ea667d3 29a00ba ea667d3 29a00ba 556de90 29a00ba a577186 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
inference: false
language:
- en
license: other
model_type: llama
pipeline_tag: text-generation
tags:
- facebook
- meta
- pytorch
- llama
- llama-2
- h2ogpt
---
h2oGPT clone of [Meta's Llama 2 13B](https://huggingface.co/meta-llama/Llama-2-13b-hf).
This model can be fine-tuned with [H2O.ai](https://h2o.ai/) open-source software:
- h2oGPT https://github.com/h2oai/h2ogpt/
- H2O LLM Studio https://h2o.ai/platform/ai-cloud/make/llm-studio/
Try our live [h2oGPT demo](https://gpt.h2o.ai) with side-by-side LLM comparisons and private document chat!
## Model Architecture
```
LlamaForCausalLM(
(model): LlamaModel(
(embed_tokens): Embedding(32000, 5120, padding_idx=0)
(layers): ModuleList(
(0-39): 40 x LlamaDecoderLayer(
(self_attn): LlamaAttention(
(q_proj): Linear(in_features=5120, out_features=5120, bias=False)
(k_proj): Linear(in_features=5120, out_features=5120, bias=False)
(v_proj): Linear(in_features=5120, out_features=5120, bias=False)
(o_proj): Linear(in_features=5120, out_features=5120, bias=False)
(rotary_emb): LlamaRotaryEmbedding()
)
(mlp): LlamaMLP(
(gate_proj): Linear(in_features=5120, out_features=13824, bias=False)
(up_proj): Linear(in_features=5120, out_features=13824, bias=False)
(down_proj): Linear(in_features=13824, out_features=5120, bias=False)
(act_fn): SiLUActivation()
)
(input_layernorm): LlamaRMSNorm()
(post_attention_layernorm): LlamaRMSNorm()
)
)
(norm): LlamaRMSNorm()
)
(lm_head): Linear(in_features=5120, out_features=32000, bias=False)
)
``` |