|
library(ggplot2) |
|
task.dic <- list("fluorescence"=c("score"="fluorescence")) |
|
genes <- c("fluorescence") |
|
|
|
|
|
source('./AUROC.R') |
|
alphabet <- c('<cls>', '<pad>', '<eos>', '<unk>', |
|
'L', 'A', 'G', 'V', 'S', 'E', 'R', 'T', 'I', 'D', |
|
'P', 'K', 'Q', 'N', 'F', 'Y', 'M', 'H', 'W', 'C', |
|
'X', 'B', 'U', 'Z', 'O', '.', '-', |
|
'<null_1>', '<mask>') |
|
result <- data.frame() |
|
dash.base.line.models <- data.frame() |
|
for (i in 1:length(genes)) { |
|
task.length <- length(task.dic[[genes[i]]]) |
|
for (subset in 1:6) { |
|
for (fold in 1:4) { |
|
|
|
if (!subset %in% c(1,2,4,6,8)) { |
|
test.result <- read.csv(paste0('../', |
|
yaml::read_yaml(paste0('../scripts/PreMode.mean.var/', |
|
genes[i], '/', genes[i], '.seed.', |
|
fold, '.yaml'))$log_dir, '/testing.round.', subset-1, '.csv')) |
|
baseline.auc.1 <- list(R2=rep(NA, task.length)) |
|
} else { |
|
test.result <- read.csv(paste0('../', |
|
yaml::read_yaml(paste0('../scripts/PreMode.mean.var/', |
|
genes[i], '/', genes[i], '.seed.', |
|
fold, '.yaml'))$log_dir, '/testing.round.', subset-1, '.csv')) |
|
baseline.result.1 <- read.csv(paste0('PreMode/', genes[i], '/', |
|
'/testing.subset.', subset, '.fold.', fold, '.csv')) |
|
baseline.auc.1 <- plot.R2(baseline.result.1[,names(task.dic[[genes[i]]])], |
|
baseline.result.1[,paste0("logits")], |
|
bin = grepl("bin", genes[i])) |
|
} |
|
PreMode.auc <- plot.R2(test.result[,names(task.dic[[genes[i]]])], |
|
test.result[,paste0("logits")], |
|
bin = grepl("bin", genes[i])) |
|
to.append <- data.frame(min.val.R = c(PreMode.auc$R2, |
|
baseline.auc.1$R2), |
|
task.name = paste0(genes[i], ":", rep(task.dic[[genes[i]]], 2))) |
|
to.append$model <- rep(c("PreMode (Adaptive Learning)", |
|
"PreMode" |
|
), each = task.length) |
|
to.append$subset <- subset |
|
to.append$seed <- fold |
|
result <- rbind(result, to.append) |
|
} |
|
} |
|
} |
|
num.models <- unique(result$model) |
|
plots <- list() |
|
library(patchwork) |
|
for (i in 1:length(task.dic)) { |
|
task <- names(task.dic)[i] |
|
task.res <- result[startsWith(result$task.name, paste0(task, ":")),] |
|
task.res <- task.res[,!is.na(task.res[1,])] |
|
assays <- length(task.dic[[i]]) |
|
data.points <- c() |
|
for (subset in 1:6) { |
|
train.file <- read.csv(paste0('../', yaml::read_yaml(paste0('../scripts/PreMode.mean.var/', |
|
genes[i], '/', genes[i], '.seed.', |
|
fold, '.yaml'))$log_dir, '/data_file_train.round.', subset-1, '.csv')) |
|
data.points <- c(data.points, sum(train.file$split=='train')) |
|
} |
|
task.plots <- list() |
|
for (k in 1:length(num.models)) { |
|
model <- num.models[k] |
|
to.plot <- task.res[task.res$model==model,] |
|
to.plot <- to.plot[!is.na(to.plot$min.val.R),] |
|
|
|
to.plot.uniq <- to.plot[to.plot$seed==1,] |
|
for (j in 1:dim(to.plot.uniq)[1]) { |
|
rhos <- to.plot$min.val.R[to.plot$subset==to.plot.uniq$subset[j]] |
|
rhos <- rhos[rhos>0] |
|
to.plot.uniq$rho[j] <- mean(rhos, na.rm = T) |
|
to.plot.uniq$rho.sd[j] <- sd(rhos, na.rm = T) |
|
} |
|
to.plot.uniq$task.name <- 'fluorescence' |
|
p <- ggplot(to.plot.uniq, aes(x=subset, y=rho, col=task.name)) + |
|
geom_point() + |
|
geom_line() + |
|
geom_errorbar(aes(ymin=rho-rho.sd, ymax=rho+rho.sd), width=.2) + |
|
scale_y_continuous(breaks=seq(0.4, 0.8, 0.2), limits = c(0.4, 0.8)) + |
|
scale_x_continuous(breaks=1:6, |
|
labels=paste0(data.points, |
|
paste0(" (", 1:6, "0%)"))) + |
|
labs(col = "Fluorescence") + |
|
theme_bw() + theme(axis.text.x = element_text(angle = 45, hjust = 1)) + |
|
ggtitle(paste0(task, ":", model)) + ggeasy::easy_center_title() + xlab("training data size (%)") |
|
p <- p + geom_abline(slope=0, intercept=0.69, linetype='dashed') + |
|
geom_text(x=2, y=0.72, label='rho=0.69', col='black') |
|
task.plots[[k]] <- p |
|
} |
|
plots[[i]] <- task.plots[[1]] + task.plots[[2]] |
|
} |
|
library(patchwork) |
|
p <- plots[[1]] |
|
ggsave(p, filename = paste0("figs/fig.sup.14.pdf"), width = 10, height = 4.5) |