PreMode / analysis /dnv.table.to.uniprot.R
gzhong's picture
Upload folder using huggingface_hub
7718235 verified
# parse dnv table to HGNC, columns:
# Reauired: VarID, Score, HGNC, aaChg
# Optional: offset
source('/share/pascal/Users/gz2294/Pipeline/parse.variant.wt.sequence.R')
dnv.table.seperate.multiple.effects <- function(
dnv.table, njobs=42, split.chr=";",
cols.to.split=c("TransIDs", "TransEffs", "AAChg", "Symbol", "GeneID", "HGNC", "GeneEff"),
carno.only=TRUE) {
# expect to receive standard output from VEP
duplicated.effects.idx <- grep(split.chr, dnv.table$AAChg)
if (length(duplicated.effects.idx)!=0) {
dnv.table.nodup <- dnv.table[-duplicated.effects.idx,]
dnv.table.dup <- dnv.table[duplicated.effects.idx,]
library(doParallel)
cl <- makeCluster(njobs)
registerDoParallel(cl)
cols.to.split <- cols.to.split[cols.to.split %in% colnames(dnv.table.dup)]
dnv.table.dup.expand <- foreach (i = 1:dim(dnv.table.dup)[1], .combine = rbind, .multicombine=TRUE) %dopar% {
row.number <- strsplit(dnv.table.dup[i, cols.to.split[1]], split = split.chr)[[1]]
tmp <- dnv.table.dup[rep(i, length(row.number)),]
for (k in cols.to.split) {
split.res <- strsplit(dnv.table.dup[i, k], split = split.chr)[[1]][1:nrow(tmp)]
tmp[,k] <- split.res
}
if (carno.only) {
tmp <- tmp[match(dnv.table.dup$TransCanon[i], tmp$TransIDs),]
}
tmp
}
stopCluster(cl)
dnv.table <- rbind(dnv.table.nodup, dnv.table.dup.expand)
}
dnv.table
}
dnv.table.to.uniprot.by.HGNC <- function(
dnv.table, VarID.column, Score.column,
HGNC.column, aaChg.column, offset.column=NA) {
if (!is.na(offset.column)) {
offset <- as.numeric(dnv.table[,offset.column])
} else {
offset <- rep(0, dim(dnv.table)[1])
}
result <- data.frame(VarID = dnv.table[,VarID.column],
aaChg = dnv.table[,aaChg.column],
uniprotID = NA,
ref = NA,
pos = NA,
alt = NA,
score = dnv.table[,Score.column],
sequence = NA,
wt = NA,
sequence.len = NA,
seq.start = NA,
seq.end = NA,
pos.orig = NA,
sequence.orig = NA,
wt.orig = NA,
sequence.len.orig = NA,
HGNC = dnv.table[,HGNC.column])
unique_genes <- as.character(unique(result$HGNC))
uniprot_ID.mapping <- read.delim('/share/pascal/Users/gz2294/Data/Protein/uniprot.ID/swissprot.ID.mapping.tsv')
uniprot_ID <- vector("list", length(unique_genes))
uniprot_wt.sequence <- vector("list", length(unique_genes))
for (i in 1:length(unique_genes)) {
uniprot_ID[[i]] <- uniprot_ID.mapping$Entry[grep(paste0('\\b', unique_genes[i], '\\b'),
uniprot_ID.mapping$Gene.Names)]
uniprot_wt.sequence[[i]] <- uniprot_ID.mapping$Sequence[grep(paste0('\\b', unique_genes[i], '\\b'),
uniprot_ID.mapping$Gene.Names)]
if (length(uniprot_ID[[i]]>1)) {
print(unique_genes[i])
}
}
# next match unreviewed IDs
empty_ids <- c()
for (i in 1:length(uniprot_ID)) {
if (length(uniprot_ID[[i]])==0) {
empty_ids <- c(empty_ids, i)
}
}
uniprot_ID.mapping <- read.delim('/share/pascal/Users/gz2294/Data/Protein/uniprot.ID/uniprot.ID.mapping.tsv')
# order to make sure first use longest transcript
uniprot_ID.mapping <- uniprot_ID.mapping[order(uniprot_ID.mapping$Length, decreasing = T),]
for (id in empty_ids) {
uniprot_ID[[id]] <- uniprot_ID.mapping$Entry[grep(paste0('\\b', unique_genes[id], '\\b'),
uniprot_ID.mapping$Gene.Names)]
uniprot_wt.sequence[[id]] <- uniprot_ID.mapping$Sequence[grep(paste0('\\b', unique_genes[id], '\\b'),
uniprot_ID.mapping$Gene.Names)]
}
for (i in 1:dim(result)[1]) {
aaChg <- result$aaChg[i]
uniprot_IDs <- uniprot_ID[[match(result$HGNC[i], unique_genes)]]
wt.sequences <- uniprot_wt.sequence[[match(result$HGNC[i], unique_genes)]]
j = 1
while (is.na(result$sequence[i]) & j <= length(uniprot_IDs)) {
result$uniprotID[i] <- uniprot_IDs[j]
wt.sequence <- wt.sequences[j]
# parse variant
substitute_res <- parse_one_substitute(aaChg, wt.sequence, offset)
result$ref[i] <- substitute_res$ref
result$pos[i] <- substitute_res$pos
result$alt[i] <- substitute_res$alt
result$sequence[i] <- substitute_res$sequence
result$wt[i] <- substitute_res$wt
result$sequence.len[i] <- substitute_res$sequence.len
result$seq.start[i] = substitute_res$seq.start
result$seq.end[i] = substitute_res$seq.end
result$pos.orig[i] = substitute_res$pos.orig
result$sequence.orig[i] = substitute_res$sequence.orig
result$wt.orig[i] = substitute_res$wt.orig
result$sequence.len.orig[i] = substitute_res$sequence.len.orig
j = j + 1
}
}
result <- dplyr::bind_cols(dnv.table[,!colnames(dnv.table) %in% colnames(result)], result)
result.noNA <- result[!is.na(result$sequence),]
output <- list(result=result,
result.noNA=result.noNA)
output
}
dnv.table.to.uniprot.by.uniprotID <- function(
dnv.table, VarID.column, Score.column,
uniprotID.column, aaChg.column, offset.column=NA) {
if (!is.na(offset.column)) {
offset <- as.numeric(dnv.table[,offset.column])
} else {
offset <- rep(0, dim(dnv.table)[1])
}
result <- data.frame(VarID = dnv.table[,VarID.column],
aaChg = dnv.table[,aaChg.column],
uniprotID = dnv.table[,uniprotID.column],
ref = NA,
pos = NA,
alt = NA,
score = dnv.table[,Score.column],
sequence = NA,
wt = NA,
sequence.len = NA,
seq.start = NA,
seq.end = NA,
pos.orig = NA,
sequence.orig = NA,
wt.orig = NA,
sequence.len.orig = NA,
HGNC = NA)
uniprot_ID.mapping <- read.delim('/share/pascal/Users/gz2294/Data/Protein/uniprot.ID/uniprot.ID.mapping.tsv')
# order to make sure first use longest transcript
uniprot_ID.mapping <- uniprot_ID.mapping[order(uniprot_ID.mapping$Length, decreasing = T),]
for (i in 1:dim(result)[1]) {
aaChg <- result$aaChg[i]
uniprot_IDs <- result$uniprotID[i]
if (grepl("-", uniprot_IDs)) {
url.request <- paste0('https://rest.uniprot.org/uniprotkb/', uniprot_IDs, '.fasta')
txt <- strsplit(RCurl::getURL(url.request), split = '\n')[[1]]
wt.sequences <- paste(txt[2:length(txt)], collapse = '')
} else {
wt.sequences <- uniprot_ID.mapping$Sequence[match(uniprot_IDs, uniprot_ID.mapping$Entry)]
}
j = 1
while (is.na(result$sequence[i]) & j <= length(uniprot_IDs)) {
wt.sequence <- wt.sequences[j]
# parse variant
substitute_res <- parse_one_substitute(aaChg, wt.sequence, offset[i])
result$ref[i] <- substitute_res$ref
result$pos[i] <- substitute_res$pos
result$alt[i] <- substitute_res$alt
result$sequence[i] <- substitute_res$sequence
result$wt[i] <- substitute_res$wt
result$sequence.len[i] <- substitute_res$sequence.len
result$seq.start[i] = substitute_res$seq.start
result$seq.end[i] = substitute_res$seq.end
result$pos.orig[i] = substitute_res$pos.orig
result$sequence.orig[i] = substitute_res$sequence.orig
result$wt.orig[i] = substitute_res$wt.orig
result$sequence.len.orig[i] = substitute_res$sequence.len.orig
j = j + 1
}
}
result <- dplyr::bind_cols(dnv.table[,!colnames(dnv.table) %in% colnames(result)], result)
result.noNA <- result[!is.na(result$sequence),]
output <- list(result=result,
result.noNA=result.noNA)
output
}
dnv.table.to.uniprot.by.HGNC.parallel <- function(
dnv.table, VarID.column, Score.column,
HGNC.column, aaChg.column, offset.column=NA, njobs=42) {
library(doParallel)
cl <- makeCluster(njobs)
registerDoParallel(cl)
if (!is.na(offset.column)) {
offset <- as.numeric(dnv.table[,offset.column])
} else {
offset <- rep(0, dim(dnv.table)[1])
}
prompt <- data.frame(VarID = dnv.table[,VarID.column],
aaChg = dnv.table[,aaChg.column],
score = dnv.table[,Score.column],
HGNC = dnv.table[,HGNC.column])
unique_genes <- as.character(unique(prompt$HGNC))
uniprot_ID.mapping <- read.delim('/share/pascal/Users/gz2294/Data/Protein/uniprot.ID/swissprot.ID.mapping.tsv')
# order to make sure first use longest transcript
uniprot_ID.mapping <- uniprot_ID.mapping[order(uniprot_ID.mapping$Length, decreasing = T),]
# first match reviewed IDs
uniprot_ID <- foreach (i = 1:length(unique_genes)) %dopar% {
tmp <- uniprot_ID.mapping$Entry[grep(paste0('\\b', unique_genes[i], '\\b'),
uniprot_ID.mapping$Gene.Names)]
if (length(tmp>1)) {
print(unique_genes[i])
}
tmp
}
uniprot_wt.sequence <- foreach (i = 1:length(unique_genes)) %dopar% {
tmp <- uniprot_ID.mapping$Sequence[grep(paste0('\\b', unique_genes[i], '\\b'),
uniprot_ID.mapping$Gene.Names)]
tmp
}
# next match unreviewed IDs
empty_ids <- c()
for (i in 1:length(uniprot_ID)) {
if (length(uniprot_ID[[i]])==0) {
empty_ids <- c(empty_ids, i)
}
}
uniprot_ID.mapping <- read.delim('/share/pascal/Users/gz2294/Data/Protein/uniprot.ID/uniprot.ID.mapping.tsv')
# order to make sure first use longest transcript
uniprot_ID.mapping <- uniprot_ID.mapping[order(uniprot_ID.mapping$Length, decreasing = T),]
for (id in empty_ids) {
uniprot_ID[[id]] <- uniprot_ID.mapping$Entry[grep(paste0('\\b', unique_genes[id], '\\b'),
uniprot_ID.mapping$Gene.Names)]
uniprot_wt.sequence[[id]] <- uniprot_ID.mapping$Sequence[grep(paste0('\\b', unique_genes[id], '\\b'),
uniprot_ID.mapping$Gene.Names)]
}
result <- foreach (i = 1:dim(prompt)[1], .combine = rbind, .multicombine=TRUE) %dopar% {
source('/share/pascal/Users/gz2294/Pipeline/parse.variant.wt.sequence.R')
substitute_res <- list(ref=NA, pos=NA, alt=NA, wt = NA,
sequence = NA, sequence.len = NA,
seq.start = NA, seq.end = NA,
pos.orig = NA, sequence.orig = NA,
wt.orig = NA, sequence.len.orig = NA)
aaChg <- prompt$aaChg[i]
uniprot_IDs <- uniprot_ID[[match(prompt$HGNC[i], unique_genes)]]
wt.sequences <- uniprot_wt.sequence[[match(prompt$HGNC[i], unique_genes)]]
j = 1
while (is.na(substitute_res$sequence) & j <= length(uniprot_IDs)) {
matched_uniprot_ID <- uniprot_IDs[j]
wt.sequence <- wt.sequences[j]
# parse variant
substitute_res <- parse_one_substitute(aaChg, wt.sequence, offset[i])
j = j + 1
}
tmp <- data.frame(VarID = prompt$VarID[i],
aaChg = prompt$aaChg[i],
uniprotID = matched_uniprot_ID,
ref = substitute_res$ref,
pos = substitute_res$pos,
alt = substitute_res$alt,
score = prompt$score[i],
sequence = substitute_res$sequence,
wt = substitute_res$wt,
sequence.len = substitute_res$sequence.len,
seq.start = substitute_res$seq.start,
seq.end = substitute_res$seq.end,
pos.orig = substitute_res$pos.orig,
sequence.orig = substitute_res$sequence.orig,
wt.orig = substitute_res$wt.orig,
sequence.len.orig = substitute_res$sequence.len.orig,
HGNC = prompt$HGNC[i])
tmp
}
stopCluster(cl)
result <- dplyr::bind_cols(dnv.table[,!colnames(dnv.table) %in% colnames(result)], result)
result.noNA <- result[!is.na(result$sequence),]
output <- list(result=result,
result.noNA=result.noNA)
output
}
dnv.table.to.uniprot.by.HGNC.af2.parallel <- function(
dnv.table, VarID.column, Score.column,
HGNC.column, aaChg.column, offset.column=NA, njobs=42) {
library(doParallel)
cl <- makeCluster(njobs)
registerDoParallel(cl)
if (!is.na(offset.column)) {
offset <- as.numeric(dnv.table[,offset.column])
} else {
offset <- rep(0, dim(dnv.table)[1])
}
prompt <- data.frame(VarID = dnv.table[,VarID.column],
aaChg = dnv.table[,aaChg.column],
score = dnv.table[,Score.column],
HGNC = dnv.table[,HGNC.column])
unique_genes <- as.character(unique(prompt$HGNC))
af2.mapping <- read.csv('/share/pascal/Users/gz2294/Data/af2_uniprot/swissprot_and_human.csv', row.names = 1)
uniprot_ID.mapping <- read.delim('/share/pascal/Users/gz2294/Data/Protein/uniprot.ID/swissprot.ID.mapping.tsv')
# order to make sure first use longest transcript
uniprot_ID.mapping <- uniprot_ID.mapping[order(uniprot_ID.mapping$Length, decreasing = T),]
# first match reviewed IDs
uniprot_ID <- foreach (i = 1:length(unique_genes)) %dopar% {
tmp <- af2.mapping$uniprotID[match(unique_genes[i], af2.mapping$HGNC)]
if (is.na(tmp)) {
tmp <- uniprot_ID.mapping$Entry[grep(paste0('\\b', unique_genes[i], '\\b'),
uniprot_ID.mapping$Gene.Names)]
if (length(tmp>1)) {
print(unique_genes[i])
}
}
tmp
}
uniprot_wt.sequence <- foreach (i = 1:length(unique_genes)) %dopar% {
tmp <- af2.mapping$seq[match(unique_genes[i], af2.mapping$HGNC)]
if (is.na(tmp)) {
tmp <- uniprot_ID.mapping$Sequence[grep(paste0('\\b', unique_genes[i], '\\b'),
uniprot_ID.mapping$Gene.Names)]
}
tmp
}
# next match unreviewed IDs
empty_ids <- c()
for (i in 1:length(uniprot_ID)) {
if (length(uniprot_ID[[i]])==0) {
empty_ids <- c(empty_ids, i)
}
}
uniprot_ID.mapping <- read.delim('/share/pascal/Users/gz2294/Data/Protein/uniprot.ID/uniprot.ID.mapping.tsv')
# order to make sure first use longest transcript
uniprot_ID.mapping <- uniprot_ID.mapping[order(uniprot_ID.mapping$Length, decreasing = T),]
for (id in empty_ids) {
uniprot_ID[[id]] <- uniprot_ID.mapping$Entry[grep(paste0('\\b', unique_genes[id], '\\b'),
uniprot_ID.mapping$Gene.Names)]
uniprot_wt.sequence[[id]] <- uniprot_ID.mapping$Sequence[grep(paste0('\\b', unique_genes[id], '\\b'),
uniprot_ID.mapping$Gene.Names)]
}
result <- foreach (i = 1:dim(prompt)[1], .combine = rbind, .multicombine=TRUE) %dopar% {
source('/share/pascal/Users/gz2294/Pipeline/parse.variant.wt.sequence.R')
substitute_res <- list(ref=NA, pos=NA, alt=NA, wt = NA,
sequence = NA, sequence.len = NA,
seq.start = NA, seq.end = NA,
pos.orig = NA, sequence.orig = NA,
wt.orig = NA, sequence.len.orig = NA)
aaChg <- prompt$aaChg[i]
uniprot_IDs <- uniprot_ID[[match(prompt$HGNC[i], unique_genes)]]
wt.sequences <- uniprot_wt.sequence[[match(prompt$HGNC[i], unique_genes)]]
j = 1
while (is.na(substitute_res$sequence) & j <= length(uniprot_IDs)) {
matched_uniprot_ID <- uniprot_IDs[j]
wt.sequence <- wt.sequences[j]
# parse variant
substitute_res <- parse_one_substitute(aaChg, wt.sequence, offset[i])
j = j + 1
}
tmp <- data.frame(VarID = prompt$VarID[i],
aaChg = prompt$aaChg[i],
uniprotID = matched_uniprot_ID,
ref = substitute_res$ref,
pos = substitute_res$pos,
alt = substitute_res$alt,
score = prompt$score[i],
sequence = substitute_res$sequence,
wt = substitute_res$wt,
sequence.len = substitute_res$sequence.len,
seq.start = substitute_res$seq.start,
seq.end = substitute_res$seq.end,
pos.orig = substitute_res$pos.orig,
sequence.orig = substitute_res$sequence.orig,
wt.orig = substitute_res$wt.orig,
sequence.len.orig = substitute_res$sequence.len.orig,
HGNC = prompt$HGNC[i])
tmp
}
stopCluster(cl)
result <- dplyr::bind_cols(dnv.table[,!colnames(dnv.table) %in% colnames(result)], result)
result.noNA <- result[!is.na(result$sequence),]
output <- list(result=result,
result.noNA=result.noNA)
output
}
dnv.table.to.uniprot.by.uniprotID.parallel <- function(
dnv.table, VarID.column, Score.column,
uniprotID.column, aaChg.column, offset.column=NA, length.column=NA,
match.length=FALSE, njobs=42) {
library(doParallel)
cl <- makeCluster(njobs)
registerDoParallel(cl)
if (!is.na(offset.column)) {
offset <- as.numeric(dnv.table[,offset.column])
} else {
offset <- rep(0, dim(dnv.table)[1])
}
if (match.length) {
prompt <- data.frame(VarID = dnv.table[,VarID.column],
aaChg = dnv.table[,aaChg.column],
score = dnv.table[,Score.column],
uniprotID = dnv.table[,uniprotID.column],
seq.match.length = dnv.table[,length.column])
} else {
prompt <- data.frame(VarID = dnv.table[,VarID.column],
aaChg = dnv.table[,aaChg.column],
score = dnv.table[,Score.column],
uniprotID = dnv.table[,uniprotID.column])
}
uniprot_ID.mapping <- read.delim('/share/pascal/Users/gz2294/Data/Protein/uniprot.ID/uniprot.ID.mapping.tsv')
# order to make sure first use longest transcript
uniprot_ID.mapping <- uniprot_ID.mapping[order(uniprot_ID.mapping$Length, decreasing = T),]
result <- foreach (i = 1:dim(prompt)[1], .combine = rbind, .multicombine=TRUE) %dopar% {
source('/share/pascal/Users/gz2294/Pipeline/parse.variant.wt.sequence.R')
substitute_res <- list(ref=NA, pos=NA, alt=NA, wt = NA,
sequence = NA, sequence.len = NA,
seq.start = NA, seq.end = NA,
pos.orig = NA, sequence.orig = NA,
wt.orig = NA, sequence.len.orig = NA)
aaChg <- prompt$aaChg[i]
uniprot_IDs <- prompt$uniprotID[i]
if (grepl("-", uniprot_IDs)) {
url.request <- paste0('https://rest.uniprot.org/uniprotkb/', uniprot_IDs, '.fasta')
txt <- strsplit(RCurl::getURL(url.request), split = '\n')[[1]]
wt.sequences <- paste(txt[2:length(txt)], collapse = '')
} else {
wt.sequences <- uniprot_ID.mapping$Sequence[match(uniprot_IDs, uniprot_ID.mapping$Entry)]
}
if (match.length) {
if (!is.na(wt.sequences) & nchar(wt.sequences) != prompt$seq.match.length[i]) {
wt.sequences <- NA
}
}
j = 1
while (is.na(substitute_res$sequence) & j <= length(uniprot_IDs)) {
matched_uniprot_ID <- uniprot_IDs[j]
wt.sequence <- wt.sequences[j]
# parse variant
substitute_res <- parse_one_substitute(aaChg, wt.sequence, offset[i])
j = j + 1
}
tmp <- data.frame(VarID = prompt$VarID[i],
aaChg = prompt$aaChg[i],
uniprotID = matched_uniprot_ID,
ref = substitute_res$ref,
pos = substitute_res$pos,
alt = substitute_res$alt,
score = prompt$score[i],
sequence = substitute_res$sequence,
wt = substitute_res$wt,
sequence.len = substitute_res$sequence.len,
seq.start = substitute_res$seq.start,
seq.end = substitute_res$seq.end,
pos.orig = substitute_res$pos.orig,
sequence.orig = substitute_res$sequence.orig,
wt.orig = substitute_res$wt.orig,
sequence.len.orig = substitute_res$sequence.len.orig,
HGNC = NA)
tmp
}
stopCluster(cl)
result <- dplyr::bind_cols(dnv.table[,!colnames(dnv.table) %in% colnames(result)], result)
result.noNA <- result[!is.na(result$sequence),]
output <- list(result=result,
result.noNA=result.noNA)
output
}
dnv.table.to.uniprot.by.af2.uniprotID.parallel <- function(
dnv.table, VarID.column, Score.column,
uniprotID.column, aaChg.column, offset.column=NA, length.column=NA,
match.length=FALSE, njobs=96) {
library(doParallel)
cl <- makeCluster(njobs)
registerDoParallel(cl)
if (!is.na(offset.column)) {
offset <- as.numeric(dnv.table[,offset.column])
} else {
offset <- rep(0, dim(dnv.table)[1])
}
if (match.length) {
prompt <- data.frame(VarID = dnv.table[,VarID.column],
aaChg = dnv.table[,aaChg.column],
score = dnv.table[,Score.column],
uniprotID = dnv.table[,uniprotID.column],
seq.match.length = dnv.table[,length.column])
} else {
prompt <- data.frame(VarID = dnv.table[,VarID.column],
aaChg = dnv.table[,aaChg.column],
score = dnv.table[,Score.column],
uniprotID = dnv.table[,uniprotID.column])
}
uniprot_ID.mapping <- read.csv('/share/pascal/Users/gz2294/Data/af2_uniprot/swissprot_and_human.csv')
# order to make sure first use longest transcript
# uniprot_ID.mapping <- uniprot_ID.mapping[order(uniprot_ID.mapping$Length, decreasing = T),]
result <- foreach (i = 1:dim(prompt)[1], .combine = rbind, .multicombine=TRUE) %dopar% {
source('/share/pascal/Users/gz2294/Pipeline/parse.variant.wt.sequence.R')
substitute_res <- list(ref=NA, pos=NA, alt=NA, wt = NA,
sequence = NA, sequence.len = NA,
seq.start = NA, seq.end = NA,
pos.orig = NA, sequence.orig = NA,
wt.orig = NA, sequence.len.orig = NA)
aaChg <- prompt$aaChg[i]
uniprot_IDs <- prompt$uniprotID[i]
if (grepl("-", uniprot_IDs) | !uniprot_IDs %in% uniprot_ID.mapping$uniprotID) {
url.request <- paste0('https://rest.uniprot.org/uniprotkb/', uniprot_IDs, '.fasta')
txt <- strsplit(RCurl::getURL(url.request), split = '\n')[[1]]
wt.sequences <- paste(txt[2:length(txt)], collapse = '')
} else {
wt.sequences <- uniprot_ID.mapping$seq[match(uniprot_IDs, uniprot_ID.mapping$uniprotID)]
}
if (match.length) {
if (!is.na(wt.sequences) & nchar(wt.sequences) != prompt$seq.match.length[i]) {
wt.sequences <- NA
}
}
j = 1
while (is.na(substitute_res$sequence) & j <= length(uniprot_IDs)) {
matched_uniprot_ID <- uniprot_IDs[j]
wt.sequence <- wt.sequences[j]
# parse variant
substitute_res <- parse_one_substitute(aaChg, wt.sequence, offset[i])
j = j + 1
}
tmp <- data.frame(VarID = prompt$VarID[i],
aaChg = prompt$aaChg[i],
uniprotID = matched_uniprot_ID,
ref = substitute_res$ref,
pos = substitute_res$pos,
alt = substitute_res$alt,
score = prompt$score[i],
sequence = substitute_res$sequence,
wt = substitute_res$wt,
sequence.len = substitute_res$sequence.len,
seq.start = substitute_res$seq.start,
seq.end = substitute_res$seq.end,
pos.orig = substitute_res$pos.orig,
sequence.orig = substitute_res$sequence.orig,
wt.orig = substitute_res$wt.orig,
sequence.len.orig = substitute_res$sequence.len.orig)
tmp
}
stopCluster(cl)
result <- dplyr::bind_cols(dnv.table[,!colnames(dnv.table) %in% colnames(result)], result)
result.noNA <- result[!is.na(result$sequence),]
output <- list(result=result,
result.noNA=result.noNA)
output
}
dnv.table.to.uniprot.by.ensembl_geneID.parallel <- function(
dnv.table, VarID.column, Score.column,
ensembl.column, aaChg.column, offset.column=NA, njobs=42) {
library(doParallel)
cl <- makeCluster(njobs)
registerDoParallel(cl)
if (!is.na(offset.column)) {
offset <- as.numeric(dnv.table[,offset.column])
} else {
offset <- rep(0, dim(dnv.table)[1])
}
prompt <- data.frame(VarID = dnv.table[,VarID.column],
aaChg = dnv.table[,aaChg.column],
score = dnv.table[,Score.column],
ensembl = dnv.table[,ensembl.column])
unique_genes <- as.character(unique(prompt$ensembl))
ensembl.mapping <- read.csv('/share/pascal/Users/gz2294/Data/Protein/uniprot.ID/ensembl.uniprot.ID.mapping.csv')
uniprot_ID.mapping <- read.delim('/share/pascal/Users/gz2294/Data/Protein/uniprot.ID/uniprot.ID.mapping.tsv')
# order to make sure first use longest transcript
uniprot_ID.mapping <- uniprot_ID.mapping[order(uniprot_ID.mapping$Length, decreasing = T),]
# first match reviewed IDs
uniprot_ID <- foreach (i = 1:length(unique_genes)) %dopar% {
tmp <- ensembl.mapping$uniprot_gn_id[grep(paste0('\\b', unique_genes[i], '\\b'),
ensembl.mapping$ensembl_gene_id)]
if (length(tmp>1)) {
print(unique_genes[i])
}
tmp
}
uniprot_wt.sequence <- foreach (i = 1:length(unique_genes)) %dopar% {
tmp <- uniprot_ID.mapping$Sequence[grep(paste0('\\b', uniprot_ID[[i]], '\\b'),
uniprot_ID.mapping$Gene.Names)]
tmp
}
# next match unreviewed IDs
empty_ids <- c()
for (i in 1:length(uniprot_ID)) {
if (length(uniprot_ID[[i]])==0) {
empty_ids <- c(empty_ids, i)
}
}
uniprot_ID.mapping <- read.delim('/share/pascal/Users/gz2294/Data/Protein/uniprot.ID/uniprot.ID.mapping.tsv')
# order to make sure first use longest transcript
uniprot_ID.mapping <- uniprot_ID.mapping[order(uniprot_ID.mapping$Length, decreasing = T),]
for (id in empty_ids) {
uniprot_ID[[id]] <- uniprot_ID.mapping$Entry[grep(paste0('\\b', unique_genes[id], '\\b'),
uniprot_ID.mapping$Gene.Names)]
uniprot_wt.sequence[[id]] <- uniprot_ID.mapping$Sequence[grep(paste0('\\b', unique_genes[id], '\\b'),
uniprot_ID.mapping$Gene.Names)]
}
result <- foreach (i = 1:dim(prompt)[1], .combine = rbind, .multicombine=TRUE) %dopar% {
source('/share/pascal/Users/gz2294/Pipeline/parse.variant.wt.sequence.R')
substitute_res <- list(ref=NA, pos=NA, alt=NA, wt = NA,
sequence = NA, sequence.len = NA,
seq.start = NA, seq.end = NA,
pos.orig = NA, sequence.orig = NA,
wt.orig = NA, sequence.len.orig = NA)
aaChg <- prompt$aaChg[i]
uniprot_IDs <- uniprot_ID[[match(prompt$ensembl[i], unique_genes)]]
wt.sequences <- uniprot_wt.sequence[[match(prompt$ensembl[i], unique_genes)]]
j = 1
while (is.na(substitute_res$sequence) & j <= length(uniprot_IDs)) {
matched_uniprot_ID <- uniprot_IDs[j]
wt.sequence <- wt.sequences[j]
# parse variant
substitute_res <- parse_one_substitute(aaChg, wt.sequence, offset[i])
j = j + 1
}
tmp <- data.frame(VarID = prompt$VarID[i],
aaChg = prompt$aaChg[i],
uniprotID = matched_uniprot_ID,
ref = substitute_res$ref,
pos = substitute_res$pos,
alt = substitute_res$alt,
score = prompt$score[i],
sequence = substitute_res$sequence,
wt = substitute_res$wt,
sequence.len = substitute_res$sequence.len,
seq.start = substitute_res$seq.start,
seq.end = substitute_res$seq.end,
pos.orig = substitute_res$pos.orig,
sequence.orig = substitute_res$sequence.orig,
wt.orig = substitute_res$wt.orig,
sequence.len.orig = substitute_res$sequence.len.orig,
ensembl = prompt$ensembl[i])
tmp
}
stopCluster(cl)
result <- dplyr::bind_cols(dnv.table[,!colnames(dnv.table) %in% colnames(result)], result)
result.noNA <- result[!is.na(result$sequence),]
output <- list(result=result,
result.noNA=result.noNA)
output
}
dnv.table.to.uniprot.by.ensembl_transcriptID.parallel <- function(
dnv.table, VarID.column, Score.column,
ensembl.column, aaChg.column, offset.column=NA, njobs=42) {
library(doParallel)
cl <- makeCluster(njobs)
registerDoParallel(cl)
if (!is.na(offset.column)) {
offset <- as.numeric(dnv.table[,offset.column])
} else {
offset <- rep(0, dim(dnv.table)[1])
}
prompt <- data.frame(VarID = dnv.table[,VarID.column],
aaChg = dnv.table[,aaChg.column],
score = dnv.table[,Score.column],
ensembl = dnv.table[,ensembl.column])
unique_genes <- as.character(unique(prompt$ensembl))
ensembl.mapping <- read.csv('/share/pascal/Users/gz2294/Data/Protein/uniprot.ID/ensembl.uniprot.ID.mapping.csv')
uniprot_ID.mapping <- read.delim('/share/pascal/Users/gz2294/Data/Protein/uniprot.ID/uniprot.ID.mapping.tsv')
# order to make sure first use longest transcript
uniprot_ID.mapping <- uniprot_ID.mapping[order(uniprot_ID.mapping$Length, decreasing = T),]
# first match reviewed IDs
uniprot_ID <- foreach (i = 1:length(unique_genes)) %dopar% {
tmp <- ensembl.mapping$uniprot_gn_id[grep(paste0('\\b', unique_genes[i], '\\b'),
ensembl.mapping$ensembl_gene_id)]
if (length(tmp>1)) {
print(unique_genes[i])
}
tmp
}
uniprot_wt.sequence <- foreach (i = 1:length(unique_genes)) %dopar% {
tmp <- uniprot_ID.mapping$Sequence[grep(paste0('\\b', uniprot_ID[[i]], '\\b'),
uniprot_ID.mapping$Gene.Names)]
tmp
}
# next match unreviewed IDs
empty_ids <- c()
for (i in 1:length(uniprot_ID)) {
if (length(uniprot_ID[[i]])==0) {
empty_ids <- c(empty_ids, i)
}
}
uniprot_ID.mapping <- read.delim('/share/pascal/Users/gz2294/Data/Protein/uniprot.ID/uniprot.ID.mapping.tsv')
# order to make sure first use longest transcript
uniprot_ID.mapping <- uniprot_ID.mapping[order(uniprot_ID.mapping$Length, decreasing = T),]
for (id in empty_ids) {
uniprot_ID[[id]] <- uniprot_ID.mapping$Entry[grep(paste0('\\b', unique_genes[id], '\\b'),
uniprot_ID.mapping$Gene.Names)]
uniprot_wt.sequence[[id]] <- uniprot_ID.mapping$Sequence[grep(paste0('\\b', unique_genes[id], '\\b'),
uniprot_ID.mapping$Gene.Names)]
}
result <- foreach (i = 1:dim(prompt)[1], .combine = rbind, .multicombine=TRUE) %dopar% {
source('/share/pascal/Users/gz2294/Pipeline/parse.variant.wt.sequence.R')
substitute_res <- list(ref=NA, pos=NA, alt=NA, wt = NA,
sequence = NA, sequence.len = NA,
seq.start = NA, seq.end = NA,
pos.orig = NA, sequence.orig = NA,
wt.orig = NA, sequence.len.orig = NA)
aaChg <- prompt$aaChg[i]
uniprot_IDs <- uniprot_ID[[match(prompt$ensembl[i], unique_genes)]]
wt.sequences <- uniprot_wt.sequence[[match(prompt$ensembl[i], unique_genes)]]
j = 1
while (is.na(substitute_res$sequence) & j <= length(uniprot_IDs)) {
matched_uniprot_ID <- uniprot_IDs[j]
wt.sequence <- wt.sequences[j]
# parse variant
substitute_res <- parse_one_substitute(aaChg, wt.sequence, offset[i])
j = j + 1
}
tmp <- data.frame(VarID = prompt$VarID[i],
aaChg = prompt$aaChg[i],
uniprotID = matched_uniprot_ID,
ref = substitute_res$ref,
pos = substitute_res$pos,
alt = substitute_res$alt,
score = prompt$score[i],
sequence = substitute_res$sequence,
wt = substitute_res$wt,
sequence.len = substitute_res$sequence.len,
seq.start = substitute_res$seq.start,
seq.end = substitute_res$seq.end,
pos.orig = substitute_res$pos.orig,
sequence.orig = substitute_res$sequence.orig,
wt.orig = substitute_res$wt.orig,
sequence.len.orig = substitute_res$sequence.len.orig,
ensembl = prompt$ensembl[i])
tmp
}
stopCluster(cl)
result <- dplyr::bind_cols(dnv.table[,!colnames(dnv.table) %in% colnames(result)], result)
result.noNA <- result[!is.na(result$sequence),]
output <- list(result=result,
result.noNA=result.noNA)
output
}
dnv.table.to.uniprot.by.ensembl_transcriptID.from.dir.parallel <- function(
dnv.table, VarID.column, Score.column,
ensembl.column, aaChg.column, ensembl.dir, offset.column=NA, njobs=42) {
library(doParallel)
cl <- makeCluster(njobs)
registerDoParallel(cl)
if (!is.na(offset.column)) {
offset <- as.numeric(dnv.table[,offset.column])
} else {
offset <- rep(0, dim(dnv.table)[1])
}
prompt <- data.frame(VarID = dnv.table[,VarID.column],
aaChg = dnv.table[,aaChg.column],
score = dnv.table[,Score.column],
ensembl = dnv.table[,ensembl.column])
unique_genes <- as.character(unique(prompt$ensembl))
ensembl.mapping <- read.csv('/share/pascal/Users/gz2294/Data/Protein/uniprot.ID/ensembl.uniprot.ID.mapping.csv')
uniprot_ID.mapping <- read.delim('/share/pascal/Users/gz2294/Data/Protein/uniprot.ID/uniprot.ID.mapping.tsv')
# order to make sure first use longest transcript
uniprot_ID.mapping <- uniprot_ID.mapping[order(uniprot_ID.mapping$Length, decreasing = T),]
# first match reviewed IDs
uniprot_ID <- as.list(unique_genes)
uniprot_wt.sequence <- foreach (i = 1:length(unique_genes)) %dopar% {
tmp <- read.csv(paste0(ensembl.dir, unique_genes[i], '.csv'), row.names = 1)
tmp <- tmp$X0
tmp
}
result <- foreach (i = 1:dim(prompt)[1], .combine = rbind, .multicombine=TRUE) %dopar% {
source('/share/pascal/Users/gz2294/Pipeline/parse.variant.wt.sequence.R')
substitute_res <- list(ref=NA, pos=NA, alt=NA, wt = NA,
sequence = NA, sequence.len = NA,
seq.start = NA, seq.end = NA,
pos.orig = NA, sequence.orig = NA,
wt.orig = NA, sequence.len.orig = NA)
aaChg <- prompt$aaChg[i]
uniprot_IDs <- uniprot_ID[[match(prompt$ensembl[i], unique_genes)]]
wt.sequences <- uniprot_wt.sequence[[match(prompt$ensembl[i], unique_genes)]]
j = 1
while (is.na(substitute_res$sequence) & j <= length(uniprot_IDs)) {
matched_uniprot_ID <- uniprot_IDs[j]
wt.sequence <- wt.sequences[j]
# parse variant
substitute_res <- parse_one_substitute(aaChg, wt.sequence, offset[i])
j = j + 1
}
tmp <- data.frame(VarID = prompt$VarID[i],
aaChg = prompt$aaChg[i],
uniprotID = matched_uniprot_ID,
ref = substitute_res$ref,
pos = substitute_res$pos,
alt = substitute_res$alt,
score = prompt$score[i],
sequence = substitute_res$sequence,
wt = substitute_res$wt,
sequence.len = substitute_res$sequence.len,
seq.start = substitute_res$seq.start,
seq.end = substitute_res$seq.end,
pos.orig = substitute_res$pos.orig,
sequence.orig = substitute_res$sequence.orig,
wt.orig = substitute_res$wt.orig,
sequence.len.orig = substitute_res$sequence.len.orig,
ensembl = prompt$ensembl[i])
tmp
}
stopCluster(cl)
result <- dplyr::bind_cols(dnv.table[,!colnames(dnv.table) %in% colnames(result)], result)
result.noNA <- result[!is.na(result$sequence),]
output <- list(result=result,
result.noNA=result.noNA)
output
}
dnv.table.to.uniprot.by.wt.seq.parallel <- function(
dnv.table, VarID.column, Score.column,
wt.seq.column, aaChg.column, offset.column=NA, njobs=42) {
library(doParallel)
cl <- makeCluster(njobs)
registerDoParallel(cl)
if (!is.na(offset.column)) {
offset <- as.numeric(dnv.table[,offset.column])
} else {
offset <- rep(0, dim(dnv.table)[1])
}
prompt <- data.frame(VarID = dnv.table[,VarID.column],
aaChg = dnv.table[,aaChg.column],
score = dnv.table[,Score.column],
wt.orig = dnv.table[,wt.seq.column])
result <- foreach (i = 1:dim(prompt)[1], .combine = rbind, .multicombine=TRUE) %dopar% {
source('/share/pascal/Users/gz2294/Pipeline/parse.variant.wt.sequence.R')
substitute_res <- list(ref=NA, pos=NA, alt=NA, wt = NA,
sequence = NA, sequence.len = NA,
seq.start = NA, seq.end = NA,
pos.orig = NA, sequence.orig = NA,
wt.orig = NA, sequence.len.orig = NA)
aaChg <- prompt$aaChg[i]
uniprot_ID <- NA
wt.sequence <- prompt$wt.orig[i]
substitute_res <- parse_one_substitute(aaChg, wt.sequence, offset[i])
tmp <- data.frame(VarID = prompt$VarID[i],
aaChg = prompt$aaChg[i],
uniprotID = NA,
ref = substitute_res$ref,
pos = substitute_res$pos,
alt = substitute_res$alt,
score = prompt$score[i],
sequence = substitute_res$sequence,
wt = substitute_res$wt,
sequence.len = substitute_res$sequence.len,
seq.start = substitute_res$seq.start,
seq.end = substitute_res$seq.end,
pos.orig = substitute_res$pos.orig,
sequence.orig = substitute_res$sequence.orig,
wt.orig = substitute_res$wt.orig,
sequence.len.orig = substitute_res$sequence.len.orig)
tmp
}
stopCluster(cl)
result <- dplyr::bind_cols(dnv.table[,!colnames(dnv.table) %in% colnames(result)], result)
result.noNA <- result[!is.na(result$sequence),]
output <- list(result=result,
result.noNA=result.noNA)
output
}
source('/share/pascal/Users/gz2294/Pipeline/uniprot.table.add.annotation.R')