File size: 31,931 Bytes
7718235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
from abc import abstractmethod, ABCMeta
from typing import Optional, Tuple
import math
import torch
from torch import _dynamo
_dynamo.config.suppress_errors = True
from torch import nn
from torch_geometric.nn import MessagePassing
# from torch_geometric.nn.pool.topk_pool import topk, filter_adj # Abort SAGPool
from torch_scatter import scatter
import loralib as lora
import gpytorch
from gpytorch.models.deep_gps import DeepGPLayer, DeepGP
from pyro.nn.module import to_pyro_module_
from data.utils import AA_DICT_HUMAN, ESM_TOKENS
from model.module.utils import act_class_mapping
from .attention import PAEMultiHeadAttentionSoftMaxStarGraph, MultiHeadAttentionSoftMaxStarGraph
from esm.modules import RobertaLMHead


class OutputModel(nn.Module, metaclass=ABCMeta):
    def __init__(self, allow_prior_model, reduce_op):
        super(OutputModel, self).__init__()
        self.allow_prior_model = allow_prior_model
        self.reduce_op = reduce_op

    def reset_parameters(self):
        pass

    @abstractmethod
    def pre_reduce(self, x, v, pos, batch):
        return

    def reduce(self, x, edge_index, edge_attr, batch):
        return scatter(x, batch, dim=0, reduce=self.reduce_op), None

    def post_reduce(self, x):
        return x


class ESMScalar(OutputModel):
    # ESMOutputModel is a special output model for ESM-2
    # it has the same initial weights as the ESM-2 model
    # it outputs the log probs of all 20 amino acids
    # currently it only handles single aa change
    def __init__(self, args,
            activation="sigmoid",
            allow_prior_model=True,
            lm_head: RobertaLMHead=None):
        # have a language model head weights
        x_channels = args["x_channels"]
        out_channels = args["output_dim"]
        reduce_op = args["reduce_op"]
        super(ESMScalar, self).__init__(
            allow_prior_model=allow_prior_model, reduce_op=reduce_op
        )
        self.activation = act_class_mapping[activation]()
        # first is lm dense layer
        self.lm_dense = nn.Linear(x_channels, x_channels)
        self.lm_dense.weight.data.copy_(lm_head.dense.weight)
        self.lm_dense.bias.data.copy_(lm_head.dense.bias)
        # next is lm_weight layer
        self.lm_weight = nn.Parameter(torch.zeros(len(ESM_TOKENS), x_channels, out_channels))
        self.lm_bias = nn.Parameter(torch.zeros(len(ESM_TOKENS), out_channels))
        # self.sigmoid_bias = nn.Parameter(torch.ones(out_channels) * -4)
        # self.sigmoid_weight = nn.Parameter(torch.ones(out_channels) * -1)
        # last is the layer norm
        self.lm_layer_norm = nn.LayerNorm(x_channels)
        # copy lm_weight to self.lm_weight
        for i in range(out_channels):
            self.lm_weight[:, :, i].data.copy_(lm_head.weight)
            self.lm_bias[:, i].data.copy_(lm_head.bias)
        self.lm_layer_norm.weight.data.copy_(lm_head.layer_norm.weight)
        
    def gelu(self, x):
        """Implementation of the gelu activation function.

        For information: OpenAI GPT's gelu is slightly different
        (and gives slightly different results):
        0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
        """
        return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))

    def pre_reduce(self, x, v, pos, batch):
        return x

    def reduce(self, x, edge_index, edge_attr, batch):
        # return the center node features
        # center node index is the most common node index in the edge_index
        center_nodes = torch.unique(edge_index[1])
        x = x[center_nodes]
        return x, None

    def post_reduce(self, x, score_mask=None):
        # apply the language model head
        # first dense layer
        x = self.lm_dense(x)
        # next gelu
        x = self.gelu(x)
        # next layer norm
        x = self.lm_layer_norm(x)
        # last linear layer
        x = torch.einsum('bh,ths->bts', x, self.lm_weight) + self.lm_bias.unsqueeze(0)
        # should apply the score mask here, -1 means reference, 1 means alternative, 0 means non of interest
        if score_mask is not None:
            x = (x * score_mask.unsqueeze(-1)).sum(dim=1)
        else:
            x = x.sum(dim=1)
        # return self.activation(x * self.sigmoid_weight + self.sigmoid_bias)
        return self.activation(x)


class ESMFullGraphScalar(ESMScalar):
    # ESMOutputModel is a special output model for ESM-2
    # it has the same initial weights as the ESM-2 model
    # it outputs the log probs of all 20 amino acids
    # currently it only handles single aa change
    def __init__(self, args,
            activation="sigmoid",
            allow_prior_model=True,
            lm_head: RobertaLMHead=None):
        # have a language model head weights
        super(ESMFullGraphScalar, self).__init__(
            args=args,
            activation=activation,
            allow_prior_model=allow_prior_model,
            lm_head=lm_head
        )
     
    def reduce(self, x, x_mask):
        # return the center node features
        # center node index is the most common node index in the edge_index
        x = (x * x_mask).sum(dim=1)
        return x, None


class EquivariantNoGraphScalar(OutputModel):
    def __init__(
            self,
            args,
            activation="sigmoid",
            allow_prior_model=True,
    ):
        x_channels = args["x_channels"]
        out_channels = args["output_dim"]
        reduce_op = args["reduce_op"]
        super(EquivariantNoGraphScalar, self).__init__(
            allow_prior_model=allow_prior_model, reduce_op=reduce_op
        )
        act_class = act_class_mapping[activation]
        self.layer_norm = nn.LayerNorm(x_channels)
        self.output_network = nn.Sequential(
            nn.Linear(x_channels, out_channels),
            act_class(),
        )

        self.reset_parameters()

    def reset_parameters(self):
        nn.init.xavier_uniform_(self.output_network[0].weight)
        self.output_network[0].bias.data.fill_(0)

    def pre_reduce(self, x, v: Optional[torch.Tensor], pos, batch):
        return x

    def reduce(self, x, edge_index, edge_attr, batch):
        return x.sum(axis=-2, keepdim=False), None

    def post_reduce(self, x):
        x = self.layer_norm(x)
        return self.output_network(x)


class EquivariantScalar(OutputModel):
    def __init__(
            self,
            args,
            activation="sigmoid",
            allow_prior_model=True,
            init_fn='uniform',
    ):
        x_channels = args["x_channels"]
        if args["model"] == "pass-forward":
            x_channels = args["x_in_channels"] if args["x_in_channels"] is not None else args["x_channels"]
            if args["add_msa"]:
                x_channels += 199
        out_channels = args["output_dim"]
        reduce_op = args["reduce_op"]
        super(EquivariantScalar, self).__init__(
            allow_prior_model=allow_prior_model, reduce_op=reduce_op
        )
        act_class = act_class_mapping[activation]
        self.output_network = nn.Sequential(
            nn.Linear(x_channels, out_channels),
            act_class(),
        )
        self.init_fn = init_fn

        self.reset_parameters()

    def reset_parameters(self):
        if self.init_fn == 'uniform':
            nn.init.xavier_uniform_(self.output_network[0].weight)
        else:
            nn.init.constant_(self.output_network[0].weight, 0)
        self.output_network[0].bias.data.fill_(0)

    def pre_reduce(self, x, v: Optional[torch.Tensor], pos, batch):
        return x

    def post_reduce(self, x):
        return self.output_network(x)


class EquivariantPAEAttnScalar(EquivariantScalar):
    def __init__(
            self,
            args,
            activation="sigmoid",
            allow_prior_model=True,
    ):
        x_channels = args["x_channels"]
        super(EquivariantAttnScalar, self).__init__(
            args=args,
            activation=activation,
            allow_prior_model=allow_prior_model,
        )
        # apply two layers of StarPool
        if args["loss_fn"] == "weighted_combined_loss" or args["loss_fn"] == "combined_loss":
            use_lora = args["use_lora"]
        else:
            use_lora = None
        input_dic = {
            "x_channels": args["x_channels"],
            "x_hidden_channels": args["x_hidden_channels"],
            "vec_channels": args["vec_channels"],
            "vec_hidden_channels": args["vec_hidden_channels"],
            "share_kv": args["share_kv"],
            "edge_attr_dist_channels": args["num_rbf"],
            "edge_attr_channels": args["num_edge_attr"],
            "distance_influence": args["distance_influence"],
            "num_heads": args["num_heads"],
            "activation": act_class_mapping[args["activation"]],
            "cutoff_lower": args["cutoff_lower"],
            "cutoff_upper": args["cutoff_upper"],
            "use_lora": use_lora
        }
        self.AttnPoolLayers = nn.ModuleList([
            PAEMultiHeadAttentionSoftMaxStarGraph(**input_dic),
        ])

    def reduce(self, x, x_center_index, w_ij, f_dist_ij, f_ij, plddt, key_padding_mask):
        # x don't have to reduce to x_center_index but w_ij and f_dist_ij have to
        w_ij = w_ij[x_center_index].unsqueeze(1)
        f_dist_ij = f_dist_ij[x_center_index].unsqueeze(1)
        f_ij = f_ij[x_center_index].unsqueeze(1)
        for layer in self.AttnPoolLayers:
            x, attn = layer(x, x_center_index, w_ij, f_dist_ij, f_ij, key_padding_mask, True)
        return x, attn


class EquivariantAttnScalar(EquivariantScalar):
    def __init__(
            self,
            args,
            activation="sigmoid",
            allow_prior_model=True,
    ):
        x_channels = args["x_channels"]
        super(EquivariantAttnScalar, self).__init__(
            args=args,
            activation=activation,
            allow_prior_model=allow_prior_model,
        )
        # apply two layers of StarPool
        if args["loss_fn"] == "weighted_combined_loss" or args["loss_fn"] == "combined_loss":
            use_lora = args["use_lora"]
        else:
            use_lora = None
        input_dic = {
            "x_channels": args["x_channels"],
            "x_hidden_channels": args["x_hidden_channels"],
            "vec_channels": args["vec_channels"],
            "vec_hidden_channels": args["vec_hidden_channels"],
            "share_kv": args["share_kv"],
            "edge_attr_dist_channels": args["num_rbf"],
            "edge_attr_channels": args["num_edge_attr"],
            "distance_influence": args["distance_influence"],
            "num_heads": args["num_heads"],
            "activation": act_class_mapping[args["activation"]],
            "cutoff_lower": args["cutoff_lower"],
            "cutoff_upper": args["cutoff_upper"],
            "use_lora": use_lora
        }
        self.AttnPoolLayers = nn.ModuleList([
            MultiHeadAttentionSoftMaxStarGraph(**input_dic),
        ])

    def reduce(self, x, x_center_index, w_ij, f_dist_ij, f_ij, plddt, key_padding_mask):
        # x don't have to reduce to x_center_index but w_ij and f_dist_ij have to
        # w_ij = w_ij[x_center_index].unsqueeze(1)
        # f_dist_ij = f_dist_ij[x_center_index].unsqueeze(1)
        f_ij = f_ij[x_center_index].unsqueeze(1)
        for layer in self.AttnPoolLayers:
            x, attn = layer(x, x_center_index, None, None, f_ij, key_padding_mask, True)
        return x, attn


class EquivariantAttnOneSiteScalar(EquivariantAttnScalar):
    def __init__(
            self,
            args,
            activation="sigmoid",
            allow_prior_model=True,
    ):
        self.output_dim = args["output_dim"]
        args["output_dim"] = len(AA_DICT_HUMAN) * self.output_dim
        super(EquivariantAttnOneSiteScalar, self).__init__(
            args=args,
            activation=activation,
            allow_prior_model=allow_prior_model,
        )

    def post_reduce(self, x):
        res = self.output_network(x).reshape(-1, len(AA_DICT_HUMAN), self.output_dim)
        return res


class EquivariantStarPoolScalar(EquivariantScalar):
    def __init__(
            self,
            args,
            activation="sigmoid",
            allow_prior_model=True,
            init_fn='uniform',
    ):
        x_channels = args["x_channels"]
        super(EquivariantStarPoolScalar, self).__init__(
            args=args,
            activation=activation,
            allow_prior_model=allow_prior_model,
            init_fn=init_fn,
        )
        # apply two layers of StarPool
        if args["loss_fn"] == "weighted_combined_loss" or args["loss_fn"] == "combined_loss":
            use_lora = args["use_lora"]
        else:
            use_lora = None
        self.StarPoolLayers = nn.ModuleList([
            StarPool(hidden_channels=x_channels,
                     edge_channels=args["num_rbf"] + args["num_edge_attr"],
                     cutoff_lower=args["cutoff_lower"],
                     cutoff_upper=args["cutoff_upper"],
                     use_lora=use_lora,
                     drop_out=args["drop_out"],
                     ratio=0.5),
        ])

    def reduce(self, x, edge_index, edge_attr, batch):
        for layer in self.StarPoolLayers:
            x, edge_index, edge_attr, batch, attn = layer(x, edge_index, edge_attr, batch)
        out = scatter(x, batch, dim=0, reduce=self.reduce_op)
        return out, attn


class EquivariantStarPoolOneSiteScalar(EquivariantStarPoolScalar):
    def __init__(
            self,
            args,
            activation="sigmoid",
            allow_prior_model=True,
    ):
        self.output_dim = args["output_dim"]
        args["output_dim"] = len(AA_DICT_HUMAN) * self.output_dim
        super(EquivariantStarPoolOneSiteScalar, self).__init__(
            args=args,
            activation=activation,
            allow_prior_model=allow_prior_model,
        )

    def post_reduce(self, x):
        res = self.output_network(x).reshape(-1, len(AA_DICT_HUMAN), self.output_dim)
        return res


class EquivariantStarPoolMeanVarScalar(EquivariantStarPoolScalar):
    def __init__(
            self,
            args,
            activation="sigmoid",
            allow_prior_model=True,
    ):
        self.output_dim = args["output_dim"]
        # make a copy of args
        args_copy = args.copy()
        args_copy["output_dim"] = 2 * self.output_dim
        super(EquivariantStarPoolMeanVarScalar, self).__init__(
            args=args_copy,
            activation=activation,
            allow_prior_model=allow_prior_model,
        )

    def post_reduce(self, x):
        # output mean and variance
        return self.output_network(x).reshape(-1, 2, self.output_dim)


class EquivariantStarPoolPyroScalar(EquivariantStarPoolScalar):
    def __init__(
            self,
            args,
            activation="sigmoid",
            allow_prior_model=True,
    ):
        super(EquivariantStarPoolPyroScalar, self).__init__(
            args=args,
            activation=activation,
            allow_prior_model=allow_prior_model,
        )
        to_pyro_module_(self.output_network)

    def post_reduce(self, x):
        return self.output_network(x)


# GP layer basic class
class GaussianProcessLayer(DeepGPLayer):
    def __init__(self, input_dims, output_dims, num_inducing=64, mean_type='constant'):
        if output_dims is None:
            inducing_points = torch.randn(num_inducing, input_dims)
            batch_shape = torch.Size([])
        else:
            inducing_points = torch.randn(output_dims, num_inducing, input_dims)
            batch_shape = torch.Size([output_dims])
        variational_distribution = gpytorch.variational.CholeskyVariationalDistribution(
            num_inducing_points=num_inducing,
            batch_shape=batch_shape
        )
        # initialize variational strategy
        variational_strategy = gpytorch.variational.VariationalStrategy(
            self,
            inducing_points,
            variational_distribution,
            learn_inducing_locations=True
        )
        super(GaussianProcessLayer, self).__init__(variational_strategy, input_dims, output_dims)
        if mean_type == 'constant':
            self.mean_module = gpytorch.means.ConstantMean(batch_shape=batch_shape)
        else:
            self.mean_module = gpytorch.means.LinearMean(input_dims)
        # Cannot use RBFKernel here because it guarantee the diagnal values to be same
        self.covar_module = gpytorch.kernels.ScaleKernel(
            gpytorch.kernels.LinearKernel(num_dimensions=input_dims),
            batch_shape=batch_shape, ard_num_dims=None
        )

    def forward(self, x):
        mean = self.mean_module(x)
        covar = self.covar_module(x)
        y = gpytorch.distributions.MultivariateNormal(mean, covar)
        y_new = y.to_data_independent_dist()
        y_new.lazy_covariance_matrix = gpytorch.lazy.DiagLazyTensor(y.lazy_covariance_matrix.diag())
        return y_new

    def __call__(self, x, *other_inputs, **kwargs):
        """
        Overriding __call__ isn't strictly necessary, but it lets us add concatenation based skip connections
        easily. For example, hidden_layer2(hidden_layer1_outputs, inputs) will pass the concatenation of the first
        hidden layer's outputs and the input data to hidden_layer2.
        """
        if len(other_inputs):
            if isinstance(x, gpytorch.distributions.MultitaskMultivariateNormal):
                x = x.rsample()

            processed_inputs = [
                inp.unsqueeze(0).expand(gpytorch.settings.num_likelihood_samples.value(), *inp.shape)
                for inp in other_inputs
            ]

            x = torch.cat([x] + processed_inputs, dim=-1)
        # TODO: here the are_samples are set to always true, not sure if it is correct
        # return super().__call__(x, are_samples=bool(len(other_inputs)), **kwargs)
        return super().__call__(x, are_samples=True, **kwargs)
    

class EquivariantStarPoolGPScalar(EquivariantStarPoolScalar, DeepGP):
    def __init__(
            self,
            args,
            activation="sigmoid",
            grid_bounds=(-10., 10.),
            allow_prior_model=True,
    ):
        x_channels = args["x_channels"]
        DeepGP.__init__(self)
        EquivariantStarPoolScalar.__init__(
            self,
            args=args,
            activation=activation,
            allow_prior_model=allow_prior_model,
        )
        # change the output network to GP
        self.output_network = GaussianProcessLayer(input_dims=x_channels, output_dims=args["output_dim"], mean_type='linear')
        self.grid_bounds = grid_bounds
        # This module will scale the NN features so that they're nice values
        self.scale_to_bounds = gpytorch.utils.grid.ScaleToBounds(self.grid_bounds[0], self.grid_bounds[1])
        self.likelihood = gpytorch.likelihoods.BernoulliLikelihood()

    def reset_parameters(self):
        # Do nothing
        return

    def post_reduce(self, x):
        # Scale the input to be between [-10, 10]
        x = self.scale_to_bounds(x)
        # Get the predicted latent function values
        x = self.output_network(x)
        return x


class PositiveLinear(nn.Module):
    def __init__(self, in_features, out_features):
        super(PositiveLinear, self).__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.weight = nn.Parameter(torch.Tensor(out_features, in_features), requires_grad=True)
        self.reset_parameters()

    def reset_parameters(self):
        nn.init.xavier_uniform_(self.weight)

    def forward(self, x):
        return nn.functional.linear(x, self.weight.exp())


class EquivariantRegressionClassificationStarPoolScalar(EquivariantStarPoolScalar):
    def __init__(
            self,
            args,
            activation="pass",
            allow_prior_model=True,
    ):
        x_channels = args["x_channels"]
        super(EquivariantRegressionClassificationStarPoolScalar, self).__init__(
            args=args,
            activation=activation,
            allow_prior_model=allow_prior_model,
        )
        # apply two layers of SAGPool
        # apply two layers of SAGPool
        self.StarPoolLayers = nn.ModuleList([
            StarPool(hidden_channels=x_channels,
                     edge_channels=args["num_rbf"] + args["num_edge_attr"],
                     cutoff_lower=args["cutoff_lower"],
                     cutoff_upper=args["cutoff_upper"],
                     use_lora=args["use_lora"],
                     drop_out=args["drop_out"],
                     ratio=0.5),
        ])
        self.output_network_1 = nn.Sequential(
            nn.Linear(x_channels, args["output_dim_1"]),
            act_class_mapping["pass"](),
        )
        self.output_network_2 = nn.Sequential(
            nn.Linear(args["output_dim_1"], args["output_dim_2"]),
            act_class_mapping["sigmoid"](),
        )

    def reduce(self, x, edge_index, edge_attr, batch):
        for layer in self.StarPoolLayers:
            x, edge_index, edge_attr, batch, attn = layer(x, edge_index, edge_attr, batch)
        out = scatter(x, batch, dim=0, reduce=self.reduce_op)
        return out, attn
    
    def post_reduce(self, x):
        x = self.output_network_1(x)
        # concat x and self.output_network_2(x) to get the final output
        output = torch.cat((self.output_network_2(x), x), dim=-1)
        return output


class EquivariantMaskPredictScalar(OutputModel):
    def __init__(
            self,
            args,
            lm_weight,
            activation="gelu",
            allow_prior_model=True,
    ):
        x_channels = args["x_channels"]
        out_channels = args["x_channels"]
        reduce_op = args["reduce_op"]
        super(EquivariantMaskPredictScalar, self).__init__(
            allow_prior_model=allow_prior_model, reduce_op=reduce_op
        )
        act_class = act_class_mapping[activation]
        self.output_network = nn.Sequential(
            nn.Linear(x_channels, out_channels),
            act_class(),
            nn.LayerNorm(out_channels),
        )
        self.lm_weight = lm_weight
        self.bias = nn.Parameter(torch.zeros(args["x_in_channels"]))

        self.reset_parameters()

    def reset_parameters(self):
        nn.init.xavier_uniform_(self.output_network[0].weight)
        self.output_network[0].bias.data.fill_(0)

    def pre_reduce(self, x, v: Optional[torch.Tensor], pos, batch):
        x = self.output_network(x)
        x = nn.functional.linear(x, self.lm_weight) + self.bias
        return x

    def post_reduce(self, x):
        return x


class EquivariantMaskPredictLogLogitsScalar(EquivariantMaskPredictScalar):
    def __init__(
            self,
            args,
            lm_weight,
            activation="gelu",
            allow_prior_model=True,
    ):
        super(EquivariantMaskPredictLogLogitsScalar, self).__init__(
            args=args,
            lm_weight=lm_weight,
            activation=activation,
            allow_prior_model=allow_prior_model,
        )

    def pre_reduce(self, x, v: Optional[torch.Tensor], pos, batch):
        x = self.output_network(x)
        x = nn.functional.linear(x, self.lm_weight) + self.bias
        x = torch.log_softmax(x, dim=-1)
        return x


class Scalar(OutputModel):
    def __init__(
            self,
            args,
            activation="silu",
            allow_prior_model=True,
    ):
        x_channels = args["x_channels"]
        out_channels = args["output_dim"]
        reduce_op = args["reduce_op"]
        super(Scalar, self).__init__(
            allow_prior_model=allow_prior_model, reduce_op=reduce_op
        )
        act_class = act_class_mapping[activation]
        self.output_network = nn.Sequential(
            nn.Linear(x_channels, x_channels // 2),
            act_class(),
            nn.Linear(x_channels // 2, out_channels),
        )

        self.reset_parameters()

    def reset_parameters(self):
        nn.init.xavier_uniform_(self.output_network[0].weight)
        self.output_network[0].bias.data.fill_(0)
        nn.init.xavier_uniform_(self.output_network[2].weight)
        self.output_network[2].bias.data.fill_(0)

    def pre_reduce(self, x, v: Optional[torch.Tensor], pos, batch):
        return self.output_network(x)


def gelu(x):
    """Implementation of the gelu activation function.

    For information: OpenAI GPT's gelu is slightly different
    (and gives slightly different results):
    0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
    """
    return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))


class StarPool(MessagePassing, metaclass=ABCMeta):
    def __init__(self,
                 hidden_channels,
                 edge_channels,
                 cutoff_lower,
                 cutoff_upper,
                 ratio=0.5,
                 drop_out=0.0,
                 num_heads=32,
                 use_lora=None,
                 non_linearity=torch.tanh):
        super(StarPool, self).__init__(aggr="mean")
        if use_lora is not None:
            self.q_proj = lora.Linear(hidden_channels, hidden_channels, r=use_lora)
            self.kv_proj = lora.Linear(hidden_channels, hidden_channels, r=use_lora)
            self.dk_proj = lora.Linear(edge_channels, hidden_channels, r=use_lora)
            # self.fc1 = lora.Linear(hidden_channels, hidden_channels, r=use_lora)
            # self.fc2 = lora.Linear(hidden_channels, hidden_channels, r=use_lora)
        else:
            self.q_proj = nn.Linear(hidden_channels, hidden_channels)
            self.kv_proj = nn.Linear(hidden_channels, hidden_channels)
            self.dk_proj = nn.Linear(edge_channels, hidden_channels)
            # self.fc1 = nn.Linear(hidden_channels, hidden_channels)
            # self.fc2 = nn.Linear(hidden_channels, hidden_channels)
        self.layernorm_in = nn.LayerNorm(hidden_channels)
        self.layernorm_out = nn.LayerNorm(hidden_channels)
        self.num_heads = num_heads
        self.hidden_channels = hidden_channels
        self.x_head_dim = hidden_channels // num_heads
        self.node_dim = 0
        self.attn_activation = act_class_mapping["silu"]()
        self.drop_out = nn.Dropout(drop_out)
        self.reset_parameters()

    def reset_parameters(self):
        nn.init.xavier_uniform_(self.q_proj.weight)
        nn.init.xavier_uniform_(self.kv_proj.weight)
        # nn.init.xavier_uniform_(self.v_proj.weight)
        nn.init.xavier_uniform_(self.dk_proj.weight)
        self.q_proj.bias.data.fill_(0)
        self.kv_proj.bias.data.fill_(0)
        # self.v_proj.bias.data.fill_(0)
        self.dk_proj.bias.data.fill_(0)

    def forward(self, x, edge_index, edge_attr, batch=None):
        residue = x
        x = self.layernorm_in(x)
        if batch is None:
            batch = edge_index.new_zeros(x.size(0))
        q = self.q_proj(x).reshape(-1, self.num_heads, self.x_head_dim)
        k = self.kv_proj(x).reshape(-1, self.num_heads, self.x_head_dim)
        # v = self.v_proj(x).reshape(-1, self.num_heads, self.x_head_dim)
        v = k
        dk = self.dk_proj(edge_attr).reshape(-1, self.num_heads, self.x_head_dim)
        x, attn = self.propagate(
            edge_index = edge_index,
            q=q,
            k=k,
            v=v,
            dk=dk,
            size=None
        )
        x = x.reshape(-1, self.hidden_channels)
        x = residue + x
        # perform topK pooling
        center_nodes = torch.unique(edge_index[1])
        perm = center_nodes
        x = x[perm]
        batch = batch[perm]
        residue = residue[perm]
        x = self.layernorm_out(x)
        x = residue + self.drop_out(x)

        return x, edge_index, edge_attr, batch, attn

    def message(self, q_i, k_j, v_j, dk):
        attn = (q_i * k_j * dk).sum(dim=-1)
        # attention activation function
        attn = self.attn_activation(attn)
        # update scalar features
        x = v_j * attn.unsqueeze(2)
        return x, attn

    def aggregate(
            self,
            features: Tuple[torch.Tensor, torch.Tensor],
            index: torch.Tensor,
            ptr: Optional[torch.Tensor],
            dim_size: Optional[int],
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        x, attn = features
        x = scatter(x, index, dim=self.node_dim, dim_size=dim_size, reduce=self.aggr)
        return x, attn
    
    def update(
            self, inputs: Tuple[torch.Tensor, torch.Tensor]
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        return inputs

    def message_and_aggregate(self, adj_t) -> torch.Tensor:
        pass

    def edge_update(self) -> torch.Tensor:
        pass


def build_output_model(output_model_name, args, **kwargs):
    if output_model_name == "EquivariantBinaryClassificationNoGraphScalar":
        return EquivariantNoGraphScalar(args=args, activation="sigmoid")
    elif output_model_name == "EquivariantBinaryClassificationScalar":
        return EquivariantScalar(args=args, activation="sigmoid")
    elif output_model_name == "ESMBinaryClassificationScalar":
        return ESMScalar(args=args, activation="sigmoid", **kwargs)
    elif output_model_name == "ESMFullGraphBinaryClassificationScalar":
        return ESMFullGraphScalar(args=args, activation="sigmoid", **kwargs)
    elif output_model_name == "EquivariantBinaryClassificationStarPoolScalar":
        return EquivariantStarPoolScalar(args=args, activation="sigmoid", init_fn=args["init_fn"])
    elif output_model_name == "EquivariantBinaryClassificationStarPoolMeanVarScalar":
        return EquivariantStarPoolMeanVarScalar(args=args, activation="softplus")
    elif output_model_name == "EquivariantBinaryClassificationAttnScalar":
        return EquivariantAttnScalar(args=args, activation="sigmoid")
    elif output_model_name == "EquivariantBinaryClassificationPAEAttnScalar":
        return EquivariantPAEAttnScalar(args=args, activation="sigmoid")
    elif output_model_name == "EquivariantBinaryClassificationStarPoolOneSiteScalar":
        return EquivariantStarPoolOneSiteScalar(args=args, activation="sigmoid")
    elif output_model_name == "EquivariantBinaryClassificationAttnOneSiteScalar":
        return EquivariantAttnOneSiteScalar(args=args, activation="sigmoid")
    elif output_model_name == "EquivariantBinaryClassificationStarPoolGPScalar":
        return EquivariantStarPoolGPScalar(args=args, activation="sigmoid")
    elif output_model_name == "EquivariantRegressionScalar":
        return EquivariantScalar(args=args, activation="pass")
    elif output_model_name == "ESMRegressionScalar":
        return ESMScalar(args=args, activation="pass", **kwargs)
    elif output_model_name == "ESMFullGraphRegressionScalar":
        return ESMFullGraphScalar(args=args, activation="pass", **kwargs)
    elif output_model_name == "EquivariantRegressionStarPoolScalar":
        return EquivariantStarPoolScalar(args=args, activation="pass")
    elif output_model_name == "EquivariantRegressionStarPoolMeanVarScalar":
        return EquivariantStarPoolMeanVarScalar(args=args, activation="pass")
    elif output_model_name == "EquivariantRegressionAttnScalar":
        return EquivariantAttnScalar(args=args, activation="pass")
    elif output_model_name == "EquivariantRegressionPAEAttnScalar":
        return EquivariantPAEAttnScalar(args=args, activation="pass")
    elif output_model_name == "EquivariantRegressionStarPoolOneSiteScalar":
        return EquivariantStarPoolOneSiteScalar(args=args, activation="pass")
    elif output_model_name == "EquivariantRegressionAttnOneSiteScalar":
        return EquivariantAttnOneSiteScalar(args=args, activation="pass")
    else:
        raise NotImplementedError