|
import inspect |
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torchvision.transforms.functional as TF |
|
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor |
|
from diffusers.loaders import FromSingleFileMixin |
|
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import ( |
|
EXAMPLE_DOC_STRING, |
|
rescale_noise_cfg, |
|
retrieve_timesteps, |
|
) |
|
from diffusers.schedulers import KarrasDiffusionSchedulers |
|
from diffusers.utils import ( |
|
USE_PEFT_BACKEND, |
|
BaseOutput, |
|
deprecate, |
|
logging, |
|
replace_example_docstring, |
|
) |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from PIL import Image |
|
|
|
from diffusers import AutoencoderKL, DiffusionPipeline, UNet2DConditionModel |
|
|
|
logger = logging.get_logger(__name__) |
|
from dataclasses import dataclass |
|
|
|
|
|
def postprocess( |
|
image: torch.FloatTensor, |
|
output_type: str = "pil", |
|
): |
|
""" |
|
Postprocess the image output from tensor to `output_type`. |
|
|
|
Args: |
|
image (`torch.FloatTensor`): |
|
The image input, should be a pytorch tensor with shape `B x C x H x W`. |
|
output_type (`str`, *optional*, defaults to `pil`): |
|
The output type of the image, can be one of `pil`, `np`, `pt`, `latent`. |
|
|
|
Returns: |
|
`PIL.Image.Image`, `np.ndarray` or `torch.FloatTensor`: |
|
The postprocessed image. |
|
""" |
|
if not isinstance(image, torch.Tensor): |
|
raise ValueError( |
|
f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor" |
|
) |
|
if output_type not in ["latent", "pt", "np", "pil"]: |
|
deprecation_message = ( |
|
f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: " |
|
"`pil`, `np`, `pt`, `latent`" |
|
) |
|
deprecate( |
|
"Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False |
|
) |
|
output_type = "np" |
|
|
|
image = image.detach().cpu() |
|
image = image.to(torch.float32) |
|
|
|
if output_type == "latent": |
|
return image |
|
|
|
|
|
image = image.clamp(-1, 1) * 0.5 + 0.5 |
|
|
|
materials = [] |
|
for i in range(image.shape[0]): |
|
|
|
material = MatForgerMaterial() |
|
material.init_from_tensor(image[i]) |
|
|
|
if output_type == "pt": |
|
material.to_pt() |
|
|
|
if output_type == "np": |
|
material.to_np() |
|
|
|
if output_type == "pil": |
|
material.to_pil() |
|
|
|
materials.append(material) |
|
|
|
return materials |
|
|
|
|
|
@dataclass |
|
class MatForgerMaterial: |
|
def __init__( |
|
self, |
|
basecolor: Optional[Union[Image.Image, np.ndarray, torch.FloatTensor]] = None, |
|
normal: Optional[Union[Image.Image, np.ndarray, torch.FloatTensor]] = None, |
|
height: Optional[Union[Image.Image, np.ndarray, torch.FloatTensor]] = None, |
|
roughness: Optional[Union[Image.Image, np.ndarray, torch.FloatTensor]] = None, |
|
metallic: Optional[Union[Image.Image, np.ndarray, torch.FloatTensor]] = None, |
|
): |
|
self.basecolor = basecolor |
|
self.normal = normal |
|
self.height = height |
|
self.roughness = roughness |
|
self.metallic = metallic |
|
|
|
def _to_numpy(self, image): |
|
if image is None: |
|
return None |
|
|
|
if isinstance(image, Image.Image): |
|
image = np.array(image) |
|
elif isinstance(image, torch.FloatTensor): |
|
image = image.cpu().numpy() |
|
return image |
|
|
|
def _to_pil(self, image): |
|
if image is None: |
|
return None |
|
|
|
if isinstance(image, np.ndarray): |
|
image = Image.fromarray(image) |
|
elif isinstance(image, torch.FloatTensor): |
|
image = TF.to_pil_image(image) |
|
return image |
|
|
|
def _to_pt(self, image): |
|
if image is None: |
|
return None |
|
|
|
if isinstance(image, np.ndarray): |
|
image = torch.from_numpy(image) |
|
elif isinstance(image, Image.Image): |
|
image = TF.to_tensor(image) |
|
return image |
|
|
|
def compute_normal_map_z_component(self, normal: torch.FloatTensor): |
|
""" |
|
Compute the z-component of the normal map for a tensor of shape (2, H, W). |
|
|
|
Parameters: |
|
- normal_map (torch.Tensor): A tensor of shape (2, H, W) containing the x and y components of the normal map. |
|
|
|
Returns: |
|
- A tensor of shape (1, H, W) containing the z-component of the normal map. |
|
""" |
|
|
|
normal = normal * 2 - 1 |
|
|
|
|
|
squared = normal**2 |
|
|
|
|
|
sum_squared = squared.sum(dim=0, keepdim=True) |
|
|
|
|
|
z_component = torch.sqrt(1 - sum_squared).clamp( |
|
min=0 |
|
) |
|
|
|
normal = torch.cat([normal, z_component], dim=0) |
|
normal = normal * 0.5 + 0.5 |
|
return normal |
|
|
|
def init_from_tensor(self, image: torch.FloatTensor): |
|
assert image.shape[0] >= 8, "Input tensor should have at least 8 channels" |
|
self.basecolor = image[:3] |
|
self.normal = self.compute_normal_map_z_component(image[3:5]) |
|
self.height = image[5:6] |
|
self.roughness = image[6:7] |
|
self.metallic = image[7:8] |
|
|
|
def to_pt(self): |
|
|
|
self.basecolor = self._to_pt(self.basecolor) |
|
self.normal = self._to_pt(self.normal) |
|
self.height = self._to_pt(self.height) |
|
self.roughness = self._to_pt(self.roughness) |
|
self.metallic = self._to_pt(self.metallic) |
|
|
|
def to_np(self): |
|
|
|
self.basecolor = self._to_numpy(self.basecolor) |
|
self.normal = self._to_numpy(self.normal) |
|
self.height = self._to_numpy(self.height) |
|
self.roughness = self._to_numpy(self.roughness) |
|
self.metallic = self._to_numpy(self.metallic) |
|
|
|
def to_pil(self): |
|
|
|
self.basecolor = self._to_pil(self.basecolor) |
|
self.normal = self._to_pil(self.normal) |
|
self.height = self._to_pil(self.height) |
|
self.roughness = self._to_pil(self.roughness) |
|
self.metallic = self._to_pil(self.metallic) |
|
|
|
def as_dict(self): |
|
return { |
|
"basecolor": self.basecolor, |
|
"normal": self.normal, |
|
"height": self.height, |
|
"roughness": self.roughness, |
|
"metallic": self.metallic, |
|
} |
|
|
|
|
|
@dataclass |
|
class MatForgerPipelineOutput(BaseOutput): |
|
""" |
|
Output class for Stable Diffusion pipelines. |
|
|
|
Args: |
|
images (`List[PIL.Image.Image]` or `np.ndarray`) |
|
List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width, |
|
num_channels)`. |
|
""" |
|
|
|
images: List[MatForgerMaterial] |
|
|
|
|
|
class MatForgerPipeline(DiffusionPipeline, FromSingleFileMixin): |
|
|
|
model_cpu_offload_seq = "prompt_encoder->unet->vae" |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
unet: UNet2DConditionModel, |
|
prompt_encoder: nn.Module, |
|
scheduler: KarrasDiffusionSchedulers, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
vae=vae, |
|
unet=unet, |
|
prompt_encoder=prompt_encoder, |
|
scheduler=scheduler, |
|
) |
|
|
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
|
|
def enable_vae_slicing(self): |
|
r""" |
|
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to |
|
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. |
|
""" |
|
self.vae.enable_slicing() |
|
|
|
def disable_vae_slicing(self): |
|
r""" |
|
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.vae.disable_slicing() |
|
|
|
def enable_vae_tiling(self): |
|
r""" |
|
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to |
|
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow |
|
processing larger images. |
|
""" |
|
self.vae.enable_tiling() |
|
|
|
def disable_vae_tiling(self): |
|
r""" |
|
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.vae.disable_tiling() |
|
|
|
def encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt=None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
""" |
|
if ( |
|
prompt is not None |
|
and isinstance(prompt, str) |
|
or isinstance(prompt, Image.Image) |
|
): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if prompt_embeds is None: |
|
prompt_embeds = self.prompt_encoder.encode_prompt(prompt) |
|
|
|
if self.prompt_encoder is not None: |
|
prompt_embeds_dtype = self.prompt_encoder.dtype |
|
elif self.unet is not None: |
|
prompt_embeds_dtype = self.unet.dtype |
|
else: |
|
prompt_embeds_dtype = prompt_embeds.dtype |
|
|
|
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view( |
|
bs_embed * num_images_per_prompt, seq_len, -1 |
|
) |
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
negative_prompt_embeds = self.prompt_encoder.encode_prompt( |
|
[""] * batch_size |
|
) |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to( |
|
dtype=prompt_embeds_dtype, device=device |
|
) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat( |
|
1, num_images_per_prompt, 1 |
|
) |
|
negative_prompt_embeds = negative_prompt_embeds.view( |
|
batch_size * num_images_per_prompt, seq_len, -1 |
|
) |
|
|
|
return prompt_embeds, negative_prompt_embeds |
|
|
|
def decode_latents(self, latents): |
|
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" |
|
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) |
|
|
|
latents = 1 / self.vae.config.scaling_factor * latents |
|
image = self.vae.decode(latents, return_dict=False)[0] |
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
|
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy() |
|
return image |
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set( |
|
inspect.signature(self.scheduler.step).parameters.keys() |
|
) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set( |
|
inspect.signature(self.scheduler.step).parameters.keys() |
|
) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
height, |
|
width, |
|
negative_prompt=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
): |
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError( |
|
f"`height` and `width` have to be divisible by 8 but are {height} and {width}." |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, (str, list, Image.Image))): |
|
raise ValueError( |
|
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}" |
|
) |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
|
|
def prepare_latents( |
|
self, |
|
batch_size, |
|
num_channels_latents, |
|
height, |
|
width, |
|
dtype, |
|
device, |
|
generator, |
|
latents=None, |
|
): |
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
height // self.vae_scale_factor, |
|
width // self.vae_scale_factor, |
|
) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor( |
|
shape, generator=generator, device=device, dtype=dtype |
|
) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float): |
|
r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497. |
|
|
|
The suffixes after the scaling factors represent the stages where they are being applied. |
|
|
|
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values |
|
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL. |
|
|
|
Args: |
|
s1 (`float`): |
|
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to |
|
mitigate "oversmoothing effect" in the enhanced denoising process. |
|
s2 (`float`): |
|
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to |
|
mitigate "oversmoothing effect" in the enhanced denoising process. |
|
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features. |
|
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features. |
|
""" |
|
if not hasattr(self, "unet"): |
|
raise ValueError("The pipeline must have `unet` for using FreeU.") |
|
self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2) |
|
|
|
def disable_freeu(self): |
|
"""Disables the FreeU mechanism if enabled.""" |
|
self.unet.disable_freeu() |
|
|
|
|
|
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32): |
|
""" |
|
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 |
|
|
|
Args: |
|
timesteps (`torch.Tensor`): |
|
generate embedding vectors at these timesteps |
|
embedding_dim (`int`, *optional*, defaults to 512): |
|
dimension of the embeddings to generate |
|
dtype: |
|
data type of the generated embeddings |
|
|
|
Returns: |
|
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)` |
|
""" |
|
assert len(w.shape) == 1 |
|
w = w * 1000.0 |
|
|
|
half_dim = embedding_dim // 2 |
|
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) |
|
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) |
|
emb = w.to(dtype)[:, None] * emb[None, :] |
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) |
|
if embedding_dim % 2 == 1: |
|
emb = torch.nn.functional.pad(emb, (0, 1)) |
|
assert emb.shape == (w.shape[0], embedding_dim) |
|
return emb |
|
|
|
|
|
def patch_image( |
|
self, |
|
image: torch.FloatTensor, |
|
patch_size: int, |
|
overlap: float = 0.5, |
|
) -> torch.FloatTensor: |
|
r""" |
|
Patch the input image into smaller patches. |
|
|
|
Args: |
|
image (`torch.Tensor`): |
|
The input image tensor to be patched. The tensor should have shape `(B, C, H, W)`. |
|
patch_size (`int`): |
|
The size of the patch. |
|
overlap (`float`, *optional*, defaults to `0.25`): |
|
The overlap between patches. |
|
|
|
Returns: |
|
`torch.Tensor`: |
|
The patched image tensor. |
|
""" |
|
|
|
B, C, H, W = image.shape |
|
|
|
|
|
stride = int(patch_size * (1 - overlap)) |
|
|
|
|
|
pad_height = (H - patch_size) % stride |
|
pad_width = (W - patch_size) % stride |
|
|
|
|
|
if pad_height > 0: |
|
pad_height = stride - pad_height |
|
if pad_width > 0: |
|
pad_width = stride - pad_width |
|
|
|
|
|
image = F.pad(image, (0, pad_width, 0, pad_height), mode="circular", value=0) |
|
H_padded, W_padded = image.shape[-2:] |
|
|
|
|
|
image = image.unfold(2, patch_size, stride).unfold(3, patch_size, stride) |
|
|
|
image = image.permute(0, 2, 3, 1, 4, 5) |
|
image = image.reshape(-1, C, patch_size, patch_size) |
|
return image, (H_padded, W_padded) |
|
|
|
|
|
def unpatch_image( |
|
self, |
|
patches: torch.FloatTensor, |
|
batch_size: int, |
|
output_size: Tuple[int, int], |
|
patch_size: int, |
|
crop_size: Optional[Tuple[int, int]] = None, |
|
overlap: float = 0.25, |
|
) -> torch.FloatTensor: |
|
""" |
|
Reconstruct the original image from its patches using fold, averaging the overlaps. |
|
|
|
Args: |
|
patches (torch.Tensor): The patches of the image with shape `(B, C, H, W)`, |
|
where `B` is the effective batch size (number of patches), |
|
`C` is the channel depth, and `H`, `W` are the patch height and width. |
|
batch_size (int): The effective batch size (number of patches). |
|
output_size (tuple): The height and width of the original image before patching. |
|
patch_size (int): The height and width of each patch (assuming square patches). |
|
crop_size (tuple, *optional*): The height and width of the cropped image. |
|
overlap (`float`, *optional*, defaults to `0.25`): |
|
The overlap between patches. |
|
|
|
Returns: |
|
torch.Tensor: The reconstructed images of shape `(B, C, H, W)`. |
|
""" |
|
|
|
if crop_size is None: |
|
crop_size = output_size |
|
|
|
|
|
stride = int(patch_size * (1 - overlap)) |
|
|
|
|
|
num_patches_per_image = patches.shape[0] // batch_size |
|
|
|
patches = patches.view( |
|
batch_size, num_patches_per_image, patches.shape[1], patch_size, patch_size |
|
) |
|
patches = patches.permute(0, 2, 3, 4, 1).contiguous() |
|
patches = patches.view( |
|
batch_size, patches.shape[1] * patch_size * patch_size, -1 |
|
) |
|
|
|
|
|
reconstructed = F.fold( |
|
patches, output_size=output_size, kernel_size=patch_size, stride=stride |
|
) |
|
|
|
|
|
mask = torch.ones_like(patches) |
|
mask = F.fold( |
|
mask, output_size=output_size, kernel_size=patch_size, stride=stride |
|
) |
|
|
|
|
|
reconstructed /= mask |
|
|
|
|
|
reconstructed = reconstructed[..., : crop_size[0], : crop_size[1]] |
|
|
|
return reconstructed |
|
|
|
@property |
|
def guidance_scale(self): |
|
return self._guidance_scale |
|
|
|
@property |
|
def guidance_rescale(self): |
|
return self._guidance_rescale |
|
|
|
|
|
|
|
|
|
@property |
|
def do_classifier_free_guidance(self): |
|
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None |
|
|
|
@property |
|
def cross_attention_kwargs(self): |
|
return self._cross_attention_kwargs |
|
|
|
@property |
|
def num_timesteps(self): |
|
return self._num_timesteps |
|
|
|
@property |
|
def interrupt(self): |
|
return self._interrupt |
|
|
|
@torch.no_grad() |
|
|
|
def __call__( |
|
self, |
|
prompt: Union[ |
|
str, List[str], PipelineImageInput, List[PipelineImageInput] |
|
] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
tileable: bool = False, |
|
patched: bool = False, |
|
num_inference_steps: int = 50, |
|
timesteps: List[int] = None, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
guidance_rescale: float = 0.0, |
|
**kwargs, |
|
): |
|
|
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
height, |
|
width, |
|
negative_prompt, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._guidance_rescale = guidance_rescale |
|
self._cross_attention_kwargs = cross_attention_kwargs |
|
self._interrupt = False |
|
|
|
|
|
if prompt is not None and ( |
|
isinstance(prompt, str) or isinstance(prompt, Image.Image) |
|
): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt( |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
self.do_classifier_free_guidance, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
) |
|
|
|
|
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
|
|
|
|
timesteps, num_inference_steps = retrieve_timesteps( |
|
self.scheduler, num_inference_steps, device, timesteps |
|
) |
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
timestep_cond = None |
|
if self.unet.config.time_cond_proj_dim is not None: |
|
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat( |
|
batch_size * num_images_per_prompt |
|
) |
|
timestep_cond = self.get_guidance_scale_embedding( |
|
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim |
|
).to(device=device, dtype=latents.dtype) |
|
|
|
|
|
self._num_timesteps = len(timesteps) |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
if self.interrupt: |
|
continue |
|
|
|
|
|
if patched: |
|
B = latents.shape[0] |
|
|
|
latents, size_padded = self.patch_image( |
|
latents, patch_size=32, overlap=0.0 |
|
) |
|
|
|
Bp = latents.shape[0] |
|
if prompt_embeds.shape[0] != Bp * 2: |
|
prompt_embeds = prompt_embeds.repeat_interleave(Bp // B, dim=0) |
|
|
|
|
|
latent_model_input = ( |
|
torch.cat([latents] * 2) |
|
if self.do_classifier_free_guidance |
|
else latents |
|
) |
|
latent_model_input = self.scheduler.scale_model_input( |
|
latent_model_input, t |
|
) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
timestep_cond=timestep_cond, |
|
cross_attention_kwargs=self.cross_attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + self.guidance_scale * ( |
|
noise_pred_text - noise_pred_uncond |
|
) |
|
|
|
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: |
|
|
|
noise_pred = rescale_noise_cfg( |
|
noise_pred, |
|
noise_pred_text, |
|
guidance_rescale=self.guidance_rescale, |
|
) |
|
|
|
|
|
latents = self.scheduler.step( |
|
noise_pred, t, latents, **extra_step_kwargs, return_dict=False |
|
)[0] |
|
|
|
if patched: |
|
|
|
latents = self.unpatch_image( |
|
latents, B, size_padded, patch_size=32, overlap=0.0 |
|
) |
|
|
|
|
|
|
|
if tileable: |
|
roll_h = torch.randint(0, height, (1,)).item() |
|
roll_w = torch.randint(0, width, (1,)).item() |
|
latents = torch.roll(latents, shifts=(roll_h, roll_w), dims=(2, 3)) |
|
|
|
|
|
if i == len(timesteps) - 1 or (i + 1) % self.scheduler.order == 0: |
|
progress_bar.update() |
|
|
|
if not output_type == "latent": |
|
if tileable: |
|
|
|
l_height = height // self.vae_scale_factor |
|
l_width = width // self.vae_scale_factor |
|
latents = TF.center_crop( |
|
latents.repeat(1, 1, 3, 3), (l_height + 4, l_width + 4) |
|
) |
|
|
|
|
|
image = self.vae.decode( |
|
latents / self.vae.config.scaling_factor, |
|
return_dict=False, |
|
generator=generator, |
|
)[0] |
|
|
|
|
|
image = TF.center_crop(image, (height, width)) |
|
else: |
|
image = latents |
|
|
|
image = postprocess(image, output_type=output_type) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return image |
|
|
|
return MatForgerPipelineOutput(images=image) |
|
|