gulfst's picture
v1
d235296
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7ca6c28830>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7ca6c288c0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7ca6c28950>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7ca6c289e0>",
"_build": "<function ActorCriticPolicy._build at 0x7f7ca6c28a70>",
"forward": "<function ActorCriticPolicy.forward at 0x7f7ca6c28b00>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7ca6c28b90>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f7ca6c28c20>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7ca6c28cb0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7ca6c28d40>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7ca6c28dd0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7f7ca6c7d4e0>"
},
"verbose": 37,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 1507328,
"_total_timesteps": 1500000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1651925004.1036255,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMBV8L0azxs+WpWKPvNQqL6p2C+9MZoXPgAAAAAAAAAAM15DPVKQubkyvJm1gF+GsDmZjDuaUbA0AACAPwAAgD8z1Ug9H9WFuVQpHDe1CjAy6OoIOxRfOLYAAIA/AACAPwAIJ76U5Yg/zXOgvp6VNL8kz3u+UlUfvQAAAAAAAAAAzc/DvPaUO7p4M4c5q7aRNBqkZ7nWoZ+4AACAPwAAgD8NoiC+OrCfPxJH575fGRy/4Xh+vorK5L0AAAAAAAAAAM0WcrwUHOu6J7wTPf70Cj3VI0S81WLmPQAAgD8AAIA/hq8rPruHmz69awK+FYYRv8No7z3OYxS+AAAAAAAAAADN1Q+99pA2uoV7eTl8k5+z2oq/u13gkLgAAIA/AACAP4BDdr2Paja6MgEmtolbErFCAfa6mhtENQAAgD8AAIA/s3sNPoVO6rtFDcY8QVkzu5c9Or1WlRa8AACAPwAAgD/N+Ie86Qm8P0Kjgb7Uebo+y1YhvF1j9r0AAAAAAAAAABpoor2yOZY/PAcvvlbsWr+h5uq9yBE5ugAAAAAAAAAABsAGviahwD9hqwm/8C7jvVE3Ub5iaI2+AAAAAAAAAACGaXa+xIPDPpXdkz6NPgK/WcJjvfb8jT0AAAAAAAAAAGY6lD0ZwbE/VPssP+UpX744hxC6lLREPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.004885333333333408,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzm3CvXLjckCUhpRSlIwBbJRL24wBdJRHQKUKT44ZMtd1fZQoaAZoCWgPQwh47j1cckZxQJSGlFKUaBVLomgWR0ClCl37tRekdX2UKGgGaAloD0MIJSL8iyA0ckCUhpRSlGgVS8hoFkdApQp+iSJTEXV9lChoBmgJaA9DCHi2R2+4q3BAlIaUUpRoFUudaBZHQKUKkS0Sh8J1fZQoaAZoCWgPQwjvrUhMUAtyQJSGlFKUaBVLzGgWR0ClCtAcT8HfdX2UKGgGaAloD0MIKC1cViH5ckCUhpRSlGgVS8NoFkdApQsGSSvC/HV9lChoBmgJaA9DCMUDyqZcIHFAlIaUUpRoFUvSaBZHQKULKj5bhWJ1fZQoaAZoCWgPQwhDVyJQfVBxQJSGlFKUaBVLrmgWR0ClCye4Cp3pdX2UKGgGaAloD0MIPrDjv8BIZECUhpRSlGgVTegDaBZHQKULhwaR6nl1fZQoaAZoCWgPQwiGIXL6+thuQJSGlFKUaBVLimgWR0ClDFBKtga4dX2UKGgGaAloD0MIIVZ/hGE2c0CUhpRSlGgVS81oFkdApQxQrBj4H3V9lChoBmgJaA9DCEXWGkrtN3JAlIaUUpRoFUusaBZHQKUMXDneSB91fZQoaAZoCWgPQwi6E+y/jjByQJSGlFKUaBVL52gWR0ClDIGuLaVVdX2UKGgGaAloD0MINPYlG09gc0CUhpRSlGgVS9VoFkdApQyIdn0033V9lChoBmgJaA9DCO0ozlHHI3FAlIaUUpRoFUu5aBZHQKUM8ukDZDl1fZQoaAZoCWgPQwiMZfol4h9yQJSGlFKUaBVL5WgWR0ClDQRh2GIsdX2UKGgGaAloD0MIFCUhkfb7ckCUhpRSlGgVS9FoFkdApQ0PCXQdCHV9lChoBmgJaA9DCFsJ3SWxJXBAlIaUUpRoFUu3aBZHQKUNcrXlKbt1fZQoaAZoCWgPQwiHU+bm2xVyQJSGlFKUaBVL1GgWR0ClDYZ2pyZKdX2UKGgGaAloD0MIUFWhgVgkc0CUhpRSlGgVS9VoFkdApQ2i5LAYYXV9lChoBmgJaA9DCPbQPlYwFnBAlIaUUpRoFUuPaBZHQKUNoC6H0sh1fZQoaAZoCWgPQwjc2sLzErlwQJSGlFKUaBVLqWgWR0ClDZ+gte2NdX2UKGgGaAloD0MI499nXPhackCUhpRSlGgVS75oFkdApQ3qoddVvXV9lChoBmgJaA9DCFJhbCFI0HFAlIaUUpRoFUvRaBZHQKUOCeA/cFh1fZQoaAZoCWgPQwh6/Ul8ruBwQJSGlFKUaBVLfmgWR0ClDiHscABDdX2UKGgGaAloD0MI5Lz/j5Nbb0CUhpRSlGgVS71oFkdApQ8VGG21D3V9lChoBmgJaA9DCCSYamYt33BAlIaUUpRoFUvCaBZHQKUPWpFTeft1fZQoaAZoCWgPQwgDIy9rYhhvQJSGlFKUaBVLoGgWR0ClD1AVfu1GdX2UKGgGaAloD0MI+E83UGBTcUCUhpRSlGgVS79oFkdApQ9XWcz68HV9lChoBmgJaA9DCHODoQ6rdnJAlIaUUpRoFUviaBZHQKUPsvQnhKl1fZQoaAZoCWgPQwjiyW5mdMdwQJSGlFKUaBVLlmgWR0ClD8SZKFqSdX2UKGgGaAloD0MIgbT/AVYsb0CUhpRSlGgVS5doFkdApQ/hfdAPd3V9lChoBmgJaA9DCOdQhqpYhnJAlIaUUpRoFUvDaBZHQKUP6btJFsp1fZQoaAZoCWgPQwgHRIgrJ39xQJSGlFKUaBVL0WgWR0ClECnTZxrBdX2UKGgGaAloD0MI0sWmlQLickCUhpRSlGgVS81oFkdApRB7kfcN6XV9lChoBmgJaA9DCGOa6V4nl3FAlIaUUpRoFUvHaBZHQKUQj38n/kx1fZQoaAZoCWgPQwh/hcyVwUZyQJSGlFKUaBVLsGgWR0ClEKv1L8JldX2UKGgGaAloD0MIAwe0dIWRckCUhpRSlGgVS7NoFkdApRDQVwgkknV9lChoBmgJaA9DCOLK2TtjhHFAlIaUUpRoFUvVaBZHQKUQxPUrkKh1fZQoaAZoCWgPQwhdGVQb3KxyQJSGlFKUaBVLzWgWR0ClEPUnXumadX2UKGgGaAloD0MILQsm/iiKcUCUhpRSlGgVS5ZoFkdApRF/y9VWCHV9lChoBmgJaA9DCIl9AihGrHBAlIaUUpRoFUugaBZHQKURtct5D7Z1fZQoaAZoCWgPQwj2JLA5B2txQJSGlFKUaBVLpmgWR0ClEcwE6kqMdX2UKGgGaAloD0MIDvPlBVgicECUhpRSlGgVS5toFkdApRH7IYFaCHV9lChoBmgJaA9DCChhpu2fT3FAlIaUUpRoFUuYaBZHQKUSJMW43FV1fZQoaAZoCWgPQwjAsz16gyNzQJSGlFKUaBVL12gWR0ClEkYPoV2zdX2UKGgGaAloD0MIjJ3wElwicUCUhpRSlGgVS7FoFkdApRJeyNXHR3V9lChoBmgJaA9DCHlYqDXN8m5AlIaUUpRoFUunaBZHQKUSVm5lOGl1fZQoaAZoCWgPQwgPmIdM+T9xQJSGlFKUaBVLoWgWR0ClEtxWcSXddX2UKGgGaAloD0MIxHjNq3oeckCUhpRSlGgVS71oFkdApRLufukUK3V9lChoBmgJaA9DCEvJchLKpnFAlIaUUpRoFUuuaBZHQKUTVtF8XvZ1fZQoaAZoCWgPQwjVlc/yPHlzQJSGlFKUaBVLp2gWR0ClE275uZTidX2UKGgGaAloD0MIUYiAQ2gOckCUhpRSlGgVS7RoFkdApRN5yCFsYXV9lChoBmgJaA9DCNJwytw8N3JAlIaUUpRoFUvTaBZHQKUTrGrCFbp1fZQoaAZoCWgPQwj5FWu4SARvQJSGlFKUaBVLqWgWR0ClFAf82rGSdX2UKGgGaAloD0MIcXK/Q9FSc0CUhpRSlGgVS+toFkdApRQlwPy08nV9lChoBmgJaA9DCG9L5IKzCHFAlIaUUpRoFUueaBZHQKUUIfms/6h1fZQoaAZoCWgPQwhxOzQsRoxxQJSGlFKUaBVLr2gWR0ClFFEgGKQ8dX2UKGgGaAloD0MIc4OhDmticUCUhpRSlGgVS5NoFkdApRSLGtITXnV9lChoBmgJaA9DCOmayTebDXBAlIaUUpRoFUugaBZHQKUUgnmaH9F1fZQoaAZoCWgPQwi/KaxUELRxQJSGlFKUaBVLlmgWR0ClFH7KifxudX2UKGgGaAloD0MI0sd8QKBcckCUhpRSlGgVS6hoFkdApRTP0qYqonV9lChoBmgJaA9DCA3k2eWbI3NAlIaUUpRoFUvFaBZHQKUU4f029+R1fZQoaAZoCWgPQwisj4e++/dxQJSGlFKUaBVLl2gWR0ClFY88DB/JdX2UKGgGaAloD0MI/plBfOBAc0CUhpRSlGgVS79oFkdApRWwF1SwW3V9lChoBmgJaA9DCBea6zTS8XJAlIaUUpRoFUukaBZHQKUV6u9OARV1fZQoaAZoCWgPQwhsJt9sM19yQJSGlFKUaBVLqGgWR0ClFe+FL39KdX2UKGgGaAloD0MI/MdCdEi2cECUhpRSlGgVS5xoFkdApRYBYxL0z3V9lChoBmgJaA9DCNZXVwXqVHFAlIaUUpRoFUufaBZHQKUWbqyGBWh1fZQoaAZoCWgPQwjFc7aAkLNzQJSGlFKUaBVL62gWR0ClFnf0NBnjdX2UKGgGaAloD0MII028A3w2cUCUhpRSlGgVS6toFkdApRa7mjj7ynV9lChoBmgJaA9DCKj+QSSD/3JAlIaUUpRoFUuraBZHQKUWt85S3sp1fZQoaAZoCWgPQwhm2v6VlWByQJSGlFKUaBVLjmgWR0ClFwq2SdOJdX2UKGgGaAloD0MIGysxzwqXdECUhpRSlGgVS7ZoFkdApRc8WRA8jnV9lChoBmgJaA9DCBEbLJwkAXJAlIaUUpRoFUu5aBZHQKUXTCMPz4F1fZQoaAZoCWgPQwjUuDe/4fhwQJSGlFKUaBVLvGgWR0ClF2AVfu1GdX2UKGgGaAloD0MIUaVmD7Rhc0CUhpRSlGgVS+BoFkdApRelnwob43V9lChoBmgJaA9DCIv6JHdY+XFAlIaUUpRoFUvDaBZHQKUXuOCoS+R1fZQoaAZoCWgPQwhuopbmVndxQJSGlFKUaBVLl2gWR0ClF/U8/2TQdX2UKGgGaAloD0MIHZCEfTt6Z0CUhpRSlGgVTegDaBZHQKUYbAkcCHR1fZQoaAZoCWgPQwj2evfHu9pxQJSGlFKUaBVLvWgWR0ClGGmbb1yvdX2UKGgGaAloD0MIN/sD5TZhc0CUhpRSlGgVS8FoFkdApRjHXPJJXnV9lChoBmgJaA9DCMpTVtN1gG9AlIaUUpRoFUueaBZHQKUYvXLeQ+51fZQoaAZoCWgPQwhb0eY4N5txQJSGlFKUaBVLymgWR0ClGPawMYuTdX2UKGgGaAloD0MI0XZM3ZVpcECUhpRSlGgVS6hoFkdApRj5EORT0nV9lChoBmgJaA9DCIUKDi+IQG9AlIaUUpRoFUuZaBZHQKUZAUzKs+51fZQoaAZoCWgPQwgt6pPcYVpxQJSGlFKUaBVLx2gWR0ClGQeHzpX7dX2UKGgGaAloD0MIeJYgIyBmcUCUhpRSlGgVS4VoFkdApRkQhQm/nHV9lChoBmgJaA9DCPc7FAX6BnNAlIaUUpRoFUuraBZHQKUZXHCoCMh1fZQoaAZoCWgPQwjaqE4HMh1xQJSGlFKUaBVLoWgWR0ClGgDTBqKxdX2UKGgGaAloD0MII9kj1AzscUCUhpRSlGgVS6loFkdApRoZPKuB+XV9lChoBmgJaA9DCAM/qmF/rXNAlIaUUpRoFUukaBZHQKUaK4GUwBZ1fZQoaAZoCWgPQwjRBfUtM8VyQJSGlFKUaBVLpmgWR0ClGqWiL2pRdX2UKGgGaAloD0MIf/YjRSQbc0CUhpRSlGgVS69oFkdApRshvvSc9XV9lChoBmgJaA9DCDuPiv97v3JAlIaUUpRoFUu+aBZHQKUb6mICU5d1fZQoaAZoCWgPQwiI2cu2E31yQJSGlFKUaBVLhWgWR0ClHBxtgrpadX2UKGgGaAloD0MI+YGrPMFxckCUhpRSlGgVS5hoFkdApRxN5t3wC3V9lChoBmgJaA9DCBl0QuigKnJAlIaUUpRoFUu6aBZHQKUcfyEL6UJ1fZQoaAZoCWgPQwidnKG4o59xQJSGlFKUaBVLoWgWR0ClHM2jwhGIdX2UKGgGaAloD0MIA2A8g8YockCUhpRSlGgVS6ZoFkdApRzjvkRzzXVlLg=="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 460,
"n_steps": 2048,
"gamma": 0.99,
"gae_lambda": 0.95,
"ent_coef": 0.0,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 10,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}