File size: 13,758 Bytes
8077738
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c366565f880>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c366565f910>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c366565f9a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c366565fa30>", "_build": "<function ActorCriticPolicy._build at 0x7c366565fac0>", "forward": "<function ActorCriticPolicy.forward at 0x7c366565fb50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c366565fbe0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c366565fc70>", "_predict": "<function ActorCriticPolicy._predict at 0x7c366565fd00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c366565fd90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c366565fe20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c366565feb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c366565b480>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691435569020747183, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACbdoz1xnVe5hjGLu3/aI7alVey7XN6WNQAAgD8AAIA/Zv/TPK4Rjbryd+Q283MsMoE8DbpsKQS2AACAPwAAgD9a2dG911U3PnqnLj5ebj6+Hj37PK9lHTwAAAAAAAAAADObRzvBNZ0/iJInvDBZjb6o+G08gBt9vQAAAAAAAAAAM8YvvaTgPLkuhKQ753qVOCssWjp6vyG5AACAPwAAgD9zc4G9PHCcP+KxA73S7qe+AnWlvT8JBT0AAAAAAAAAAC0yDj4+F50/IDfOPaFvj76o7QI+reM7vQAAAAAAAAAAmgnsvK55kbrNmw84pNocM4sNQLo6Hya3AACAPwAAgD8Ajfq9x+mqPxGbFr9rAoa+c8H6vXHrwL4AAAAAAAAAAGYalLvb9k0/a0hjvX2YTL668tc6StupOgAAAAAAAAAAgBR3PbjmyLnlTo85LZt/NCaxWDpTqKy4AACAPwAAgD/AFoS9H13ZuV3wmbu8tl84gEmBOuACWjgAAIA/AACAP80cXDt7kpK6pVt/s/me7C4iVoK6Pvy2MwAAgD8AAIA/My1TPaniCT8Ycie92pJavt+wuzwXHzw9AAAAAAAAAAA9HKC+A0huP1MBur5A07G+kVeSvsyMiz0AAAAAAAAAAPOqir3bmJA9XtWOPTOZFL7edyi9ayW/vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGH7tjTa0yCMAWyUTegDjAF0lEdAlxPTBRAKOXV9lChoBkdAb7o9qUNayWgHTVUDaAhHQJcU+gwoLG91fZQoaAZHQGBgAUDdP+JoB03oA2gIR0CXFm7Q9ic5dX2UKGgGR0Bl8fWz4UN8aAdN6ANoCEdAlxq8TviLl3V9lChoBkdAZGtq1w5vL2gHTegDaAhHQJcbmlFc6eZ1fZQoaAZHQGRobAk9lmRoB03oA2gIR0CXG/zWPLgXdX2UKGgGR0BlDxKxs2vTaAdN6ANoCEdAlyZ0B8x9HHV9lChoBkdAYNiEOiFj/mgHTegDaAhHQJcnU0Ltu1p1fZQoaAZHQGQD2UB4lhRoB03oA2gIR0CXJ7Ud7v5QdX2UKGgGR0BmwH+IdlunaAdN6ANoCEdAlza/keZG8XV9lChoBkdAYTId4mkWRGgHTegDaAhHQJc3DI5o4+91fZQoaAZHQHADtmYjSohoB03LAWgIR0CXOctvn8sMdX2UKGgGR0BiOKSHM2WIaAdN6ANoCEdAlz5GsA/9pHV9lChoBkdAZBaieNDMNmgHTegDaAhHQJdD1HqeK9B1fZQoaAZHQGPkhO58Sf1oB03oA2gIR0CXSKujRD1HdX2UKGgGR0BwTXguRLbpaAdN1QFoCEdAl0j9/FzdUXV9lChoBkdAYYUS/0ulGmgHTegDaAhHQJdfCVjZtel1fZQoaAZHwBYjvmYBvJloB00bAWgIR0CXXy05EMLGdX2UKGgGR0Bm+z7ALy+YaAdN6ANoCEdAl2KjFAE+xHV9lChoBkdAZSeOAAhjfGgHTegDaAhHQJdm+Y2Kl551fZQoaAZHQHG11VT72tdoB03cA2gIR0CXZ2+HrQgLdX2UKGgGR0BkC7KT0QK8aAdN6ANoCEdAl2m8Aq/dqXV9lChoBkdAUe1l5GBnSWgHTQgBaAhHQJdqRqsU7CB1fZQoaAZHQF/hsJpnHvNoB03oA2gIR0CXb0d8iOebdX2UKGgGR0BfdMw+MZP3aAdN6ANoCEdAl3ChAnlXBHV9lChoBkdAQnBJ7LMcImgHS/VoCEdAl3u61w5vL3V9lChoBkdAYWN/n4fwJGgHTegDaAhHQJd884rBj4J1fZQoaAZHQGL6gflp48loB03oA2gIR0CXfkkZrHlwdX2UKGgGR0BuuyyprDZUaAdNuAJoCEdAl4heaBqbjXV9lChoBkdAYPGxJul41WgHTegDaAhHQJeNfF+/gzh1fZQoaAZHQGXBe05U96loB03oA2gIR0CXjbwe/5+IdX2UKGgGR0BjU62MKkVOaAdN6ANoCEdAl5NfSMLncXV9lChoBkdAYo64FRpDeGgHTegDaAhHQJeXFMqSX+l1fZQoaAZHQG1PezMRpURoB03aA2gIR0CXoiGo73fydX2UKGgGR0BkRGeYlY2baAdN6ANoCEdAl6OB1s+FDnV9lChoBkdAZhy5EMLF42gHTegDaAhHQJe3I1xbSql1fZQoaAZHQHCJU3XI2floB02zAWgIR0CXupdyT6i1dX2UKGgGR0BmbqdlNDc/aAdN6ANoCEdAl7rbsByS3nV9lChoBkdAYcTNpM6BAmgHTegDaAhHQJe7OC8OCoV1fZQoaAZHQGOZoDoyKvVoB03oA2gIR0CXvYD3M6ikdX2UKGgGR0Bg+HtlZowmaAdN6ANoCEdAl8FStJWeYnV9lChoBkdAZIzZB9kSVWgHTegDaAhHQJfCNHuqm0p1fZQoaAZHQHDR1OCXhOxoB03cA2gIR0CXyvVcUucudX2UKGgGR0Bi7j9GZuyeaAdN6ANoCEdAl80wx33Yc3V9lChoBkdAZAre2uxKQWgHTegDaAhHQJfPD6VMVUN1fZQoaAZHQGWf0ONHYpVoB03oA2gIR0CX259Vmz0IdX2UKGgGR0Bi3lPDYRNAaAdN6ANoCEdAl+ECCJ40M3V9lChoBkdAZuXlnyup0mgHTegDaAhHQJfnf4vexfR1fZQoaAZHQGFteSKWLP5oB03oA2gIR0CX61IBikO7dX2UKGgGR0BA0/PgNwzdaAdL9GgIR0CX8JdRR/EwdX2UKGgGR0Bhr9nVXmvGaAdN6ANoCEdAl/TQ/C66KHV9lChoBkdAY/rZ39rGi2gHTegDaAhHQJf1wkIHC411fZQoaAZHQFuB7UXpGF1oB03oA2gIR0CYCozv7WNFdX2UKGgGR0Blsi/0ulGgaAdN6ANoCEdAmA4jRx95QnV9lChoBkdAZc9CUHIIW2gHTegDaAhHQJgOZ9b5dnl1fZQoaAZHQGNoHXumaYxoB03oA2gIR0CYDsIv8IiUdX2UKGgGR0BlSOMAFPi2aAdN6ANoCEdAmBEP3i704HV9lChoBkdAYxKFvhqCYmgHTegDaAhHQJgUj0NBnjB1fZQoaAZHQGXWbel9BrxoB03oA2gIR0CYFVypaRp2dX2UKGgGR0Bw4wZpBX0YaAdNwANoCEdAmBwdq1w5vXV9lChoBkdAZiP238XN1WgHTegDaAhHQJgho3Jgb6x1fZQoaAZHQG++czImw7loB01MA2gIR0CYIsZpztCzdX2UKGgGR0BmwDcwg1WKaAdN6ANoCEdAmCLqouPFN3V9lChoBkdAcmseWfK6nWgHTeABaAhHQJgy7iS7oSt1fZQoaAZHQG0EiWVu76JoB00SAmgIR0CYO5FINEw4dX2UKGgGR0BhQez6ab4KaAdN6ANoCEdAmDwFiSaEz3V9lChoBkdAZE7jNIK+jGgHTegDaAhHQJg/09ECvHN1fZQoaAZHQGVgpj+aScNoB03oA2gIR0CYRQn0TURWdX2UKGgGR0BvX1I/Z/TcaAdNtQJoCEdAmEab9MsYmHV9lChoBkdAYy9ABT4tYmgHTegDaAhHQJhI+I+GGmF1fZQoaAZHQGZTnpbD/ERoB03oA2gIR0CYSdUrkKeDdX2UKGgGR0BuhaYE4ecQaAdN0wNoCEdAmEtjCUHIIXV9lChoBkdAcI4gxJul42gHTTUBaAhHQJhd2Yc/+sJ1fZQoaAZHQDTBotcv/R5oB00NAWgIR0CYX7AM2FWXdX2UKGgGR0BiweUjcEeRaAdN6ANoCEdAmGBzg62fCnV9lChoBkdAZW36/IsAemgHTegDaAhHQJhgym3vx6R1fZQoaAZHQGEZ/mknCwdoB03oA2gIR0CYYT0gKWszdX2UKGgGR0BxBr0nPVuraAdNZAFoCEdAmGF7oKUmlnV9lChoBkdAcFSjt5UtI2gHTbMCaAhHQJhhw2Jiy6d1fZQoaAZHQHAlItthuwZoB010AWgIR0CYaaAFPi1idX2UKGgGR0Bt4zINmUW3aAdNRQFoCEdAmGuERSP2f3V9lChoBkdAY3iKFZgXuWgHTegDaAhHQJhs898qnWJ1fZQoaAZHQGQ08uBczIpoB03oA2gIR0CYcM/tIClrdX2UKGgGR0Bn6aU9pyp8aAdN6ANoCEdAmHHCpNsWPHV9lChoBkdAcZzXhOxja2gHTWcDaAhHQJh2IDs+mnB1fZQoaAZHQHCgKmO2iL5oB02cAWgIR0CYdlnXumaZdX2UKGgGR0BwZ5pXZGrkaAdN8AFoCEdAmHijOcDr7nV9lChoBkdAcMUR+z+m32gHTUYBaAhHQJh65Rm9QGh1fZQoaAZHQHA0dcfNiYtoB02fAmgIR0CYet7l7tzCdX2UKGgGR0BxMlXCCSRsaAdNgAFoCEdAmH+Rq9GqgnV9lChoBkdAb40sXizcAWgHTYgCaAhHQJiCjP9kz411fZQoaAZHQHHDDbJwKjVoB00WAWgIR0CYhrTCtRvWdX2UKGgGR0Bx5JZjhDPXaAdNTwFoCEdAmIcIwIt16nV9lChoBkdAcaQNi6QNkWgHTTcBaAhHQJiKuI42jwh1fZQoaAZHQGKaNBF/hEVoB03oA2gIR0CYjk1FH8TBdX2UKGgGR0BweMIu5BkaaAdNfQNoCEdAmJCOYtxuK3V9lChoBkdAcj+itq59VmgHTYQDaAhHQJiRVEmY0EZ1fZQoaAZHQGE5T0QK8cxoB03oA2gIR0CYkY1Vo6CEdX2UKGgGR0BxBVhkRSP2aAdNBwJoCEdAmJJOTRplBnV9lChoBkdAcA/q/M4cWGgHTWUBaAhHQJiTwZsKsuF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}