File size: 2,400 Bytes
cab954d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---

library_name: peft
license: llama3
base_model: meta-llama/Meta-Llama-3-8B
tags:
- generated_from_trainer
model-index:
- name: results_llama_8b_fim
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# results_llama_8b_fim

This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0074

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 2
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.3771        | 0.1145 | 100  | 1.0760          |
| 1.0804        | 0.2290 | 200  | 1.0491          |
| 1.1121        | 0.3434 | 300  | 1.0381          |
| 1.114         | 0.4579 | 400  | 1.0310          |
| 1.0847        | 0.5724 | 500  | 1.0264          |
| 1.0152        | 0.6869 | 600  | 1.0229          |
| 1.0289        | 0.8014 | 700  | 1.0203          |
| 1.0648        | 0.9159 | 800  | 1.0180          |
| 1.0885        | 1.0298 | 900  | 1.0156          |
| 1.0486        | 1.1442 | 1000 | 1.0122          |
| 1.1167        | 1.2587 | 1100 | 1.0108          |
| 1.0189        | 1.3732 | 1200 | 1.0098          |
| 1.0281        | 1.4877 | 1300 | 1.0090          |
| 1.0438        | 1.6022 | 1400 | 1.0084          |
| 1.0715        | 1.7167 | 1500 | 1.0079          |
| 1.0117        | 1.8311 | 1600 | 1.0076          |
| 1.024         | 1.9456 | 1700 | 1.0074          |


### Framework versions

- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 2.17.0
- Tokenizers 0.21.0