Commit
·
0ebd6fe
1
Parent(s):
de7583c
stpn
Browse files
work_dirs/stpn_swint_adam_9x/20240204_030125.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
work_dirs/stpn_swint_adam_9x/20240204_030125.log.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
work_dirs/stpn_swint_adam_9x/epoch_9_model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4bcb39c4070df69ae917cd237f36cc9c77eec63a53ce94ae9b7a931aefdd27b7
|
3 |
+
size 180353653
|
work_dirs/stpn_swint_adam_9x/eval.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{'all': 0.8515168953546883, 'fast': 0.6405709450111929, 'medium': 0.8412701278128932, 'slow': 0.9141449563100874, 'airplane': 0.9586996519276003, 'antelope': 0.8799440834409841, 'bear': 0.8989029949927739, 'bicycle': 0.8851157502725769, 'bird': 0.7930013993678566, 'bus': 0.841979109569196, 'car': 0.7758164365133777, 'cattle': 0.802800559124309, 'dog': 0.8453745668140737, 'domestic_cat': 0.9140264245981315, 'elephant': 0.8546385510194372, 'fox':
|
2 |
+
0.947818798999815, 'giant_panda': 0.8667739758302728, 'hamster': 0.9850564156153161, 'horse': 0.8874280101304849, 'lion': 0.7234216680206619, 'lizard': 0.8713093258061801, 'monkey': 0.6710894126913831, 'motorcycle': 0.9198253019671686, 'rabbit': 0.7994001086999526, 'red_panda': 0.8903292259476213, 'sheep': 0.7809233256814476, 'snake': 0.8029446576625736, 'squirrel': 0.6965247167195919, 'tiger': 0.9354936714466412, 'train': 0.8845634667175416, 'turtle': 0.81486794558347,
|
3 |
+
'watercraft': 0.8363646138283387, 'whale': 0.8189654860172317, 'zebra': 0.9621072056346469}
|
work_dirs/stpn_swint_adam_9x/stpn_swint_adam_9x.py
ADDED
@@ -0,0 +1,438 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
checkpoint_config = dict(interval=9)
|
2 |
+
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
|
3 |
+
custom_hooks = [dict(type='NumClassCheckHook')]
|
4 |
+
dist_params = dict(backend='nccl')
|
5 |
+
log_level = 'INFO'
|
6 |
+
load_from = None
|
7 |
+
resume_from = None
|
8 |
+
workflow = [('train', 1)]
|
9 |
+
optimizer = dict(
|
10 |
+
type='AdamW',
|
11 |
+
lr=2.5e-05,
|
12 |
+
betas=(0.9, 0.999),
|
13 |
+
weight_decay=0.05,
|
14 |
+
paramwise_cfg=dict(
|
15 |
+
custom_keys=dict(
|
16 |
+
absolute_pos_embed=dict(decay_mult=0.0),
|
17 |
+
relative_position_bias_table=dict(decay_mult=0.0),
|
18 |
+
norm=dict(decay_mult=0.0))))
|
19 |
+
optimizer_config = dict(grad_clip=None)
|
20 |
+
lr_config = dict(
|
21 |
+
policy='step',
|
22 |
+
warmup='linear',
|
23 |
+
warmup_iters=500,
|
24 |
+
warmup_ratio=0.3333333333333333,
|
25 |
+
step=[6])
|
26 |
+
runner = dict(type='EpochBasedRunner', max_epochs=9)
|
27 |
+
pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.2/mask_rcnn_swin_tiny_patch4_window7.pth'
|
28 |
+
is_video_model = True
|
29 |
+
model = dict(
|
30 |
+
type='STPN',
|
31 |
+
detector=dict(
|
32 |
+
type='FasterRCNN',
|
33 |
+
backbone=dict(
|
34 |
+
type='STPNSwinTransformer',
|
35 |
+
embed_dims=96,
|
36 |
+
depths=[2, 2, 6, 2],
|
37 |
+
num_heads=[3, 6, 12, 24],
|
38 |
+
window_size=7,
|
39 |
+
mlp_ratio=4,
|
40 |
+
qkv_bias=True,
|
41 |
+
qk_scale=None,
|
42 |
+
drop_rate=0.0,
|
43 |
+
attn_drop_rate=0.0,
|
44 |
+
drop_path_rate=0.2,
|
45 |
+
patch_norm=True,
|
46 |
+
with_cp=False,
|
47 |
+
convert_weights=True,
|
48 |
+
init_cfg=dict(
|
49 |
+
type='Pretrained',
|
50 |
+
checkpoint=
|
51 |
+
'https://github.com/SwinTransformer/storage/releases/download/v1.0.2/mask_rcnn_swin_tiny_patch4_window7.pth'
|
52 |
+
),
|
53 |
+
prompt_cfg=dict(
|
54 |
+
num_tokens=5,
|
55 |
+
location='prepend',
|
56 |
+
deep=False,
|
57 |
+
dropout=0.0,
|
58 |
+
initiation='random')),
|
59 |
+
neck=dict(
|
60 |
+
type='FPN',
|
61 |
+
in_channels=[96, 192, 384, 768],
|
62 |
+
out_channels=256,
|
63 |
+
num_outs=5),
|
64 |
+
rpn_head=dict(
|
65 |
+
type='RPNHead',
|
66 |
+
in_channels=256,
|
67 |
+
feat_channels=256,
|
68 |
+
anchor_generator=dict(
|
69 |
+
type='AnchorGenerator',
|
70 |
+
scales=[8],
|
71 |
+
ratios=[0.5, 1.0, 2.0],
|
72 |
+
strides=[4, 8, 16, 32, 64]),
|
73 |
+
bbox_coder=dict(
|
74 |
+
type='DeltaXYWHBBoxCoder',
|
75 |
+
target_means=[0.0, 0.0, 0.0, 0.0],
|
76 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
77 |
+
loss_cls=dict(
|
78 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
79 |
+
loss_bbox=dict(
|
80 |
+
type='SmoothL1Loss', beta=0.1111111111111111,
|
81 |
+
loss_weight=1.0)),
|
82 |
+
roi_head=dict(
|
83 |
+
type='StandardRoIHead',
|
84 |
+
bbox_roi_extractor=dict(
|
85 |
+
type='SingleRoIExtractor',
|
86 |
+
roi_layer=dict(
|
87 |
+
type='RoIAlign', output_size=7, sampling_ratio=0),
|
88 |
+
out_channels=256,
|
89 |
+
featmap_strides=[4, 8, 16, 32]),
|
90 |
+
bbox_head=dict(
|
91 |
+
type='Shared2FCBBoxHead',
|
92 |
+
in_channels=256,
|
93 |
+
fc_out_channels=1024,
|
94 |
+
roi_feat_size=7,
|
95 |
+
num_classes=30,
|
96 |
+
bbox_coder=dict(
|
97 |
+
type='DeltaXYWHBBoxCoder',
|
98 |
+
target_means=[0.0, 0.0, 0.0, 0.0],
|
99 |
+
target_stds=[0.2, 0.2, 0.2, 0.2]),
|
100 |
+
reg_class_agnostic=False,
|
101 |
+
loss_cls=dict(
|
102 |
+
type='CrossEntropyLoss',
|
103 |
+
use_sigmoid=False,
|
104 |
+
loss_weight=1.0),
|
105 |
+
loss_bbox=dict(
|
106 |
+
type='SmoothL1Loss',
|
107 |
+
beta=0.1111111111111111,
|
108 |
+
loss_weight=1.0))),
|
109 |
+
train_cfg=dict(
|
110 |
+
rpn=dict(
|
111 |
+
assigner=dict(
|
112 |
+
type='MaxIoUAssigner',
|
113 |
+
pos_iou_thr=0.7,
|
114 |
+
neg_iou_thr=0.3,
|
115 |
+
min_pos_iou=0.3,
|
116 |
+
match_low_quality=True,
|
117 |
+
ignore_iof_thr=-1),
|
118 |
+
sampler=dict(
|
119 |
+
type='RandomSampler',
|
120 |
+
num=256,
|
121 |
+
pos_fraction=0.5,
|
122 |
+
neg_pos_ub=-1,
|
123 |
+
add_gt_as_proposals=False),
|
124 |
+
allowed_border=-1,
|
125 |
+
pos_weight=-1,
|
126 |
+
debug=False),
|
127 |
+
rpn_proposal=dict(
|
128 |
+
nms_pre=1000,
|
129 |
+
max_per_img=300,
|
130 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
131 |
+
min_bbox_size=0),
|
132 |
+
rcnn=dict(
|
133 |
+
assigner=dict(
|
134 |
+
type='MaxIoUAssigner',
|
135 |
+
pos_iou_thr=0.5,
|
136 |
+
neg_iou_thr=0.5,
|
137 |
+
min_pos_iou=0.5,
|
138 |
+
match_low_quality=True,
|
139 |
+
ignore_iof_thr=-1),
|
140 |
+
sampler=dict(
|
141 |
+
type='RandomSampler',
|
142 |
+
num=256,
|
143 |
+
pos_fraction=0.25,
|
144 |
+
neg_pos_ub=-1,
|
145 |
+
add_gt_as_proposals=True),
|
146 |
+
mask_size=28,
|
147 |
+
pos_weight=-1,
|
148 |
+
debug=False)),
|
149 |
+
test_cfg=dict(
|
150 |
+
rpn=dict(
|
151 |
+
nms_pre=1000,
|
152 |
+
max_per_img=300,
|
153 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
154 |
+
min_bbox_size=0),
|
155 |
+
rcnn=dict(
|
156 |
+
score_thr=0.0001,
|
157 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
158 |
+
max_per_img=100,
|
159 |
+
mask_thr_binary=0.5))))
|
160 |
+
dataset_type = 'ImagenetVIDDataset'
|
161 |
+
data_root = 'data/ILSVRC/'
|
162 |
+
img_norm_cfg = dict(
|
163 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
164 |
+
train_pipeline = [
|
165 |
+
dict(type='LoadMultiImagesFromFile'),
|
166 |
+
dict(type='SeqLoadAnnotations', with_bbox=True, with_mask=False),
|
167 |
+
dict(type='SeqRandomFlip', share_params=True, flip_ratio=0.5),
|
168 |
+
dict(
|
169 |
+
type='AutoAugment',
|
170 |
+
policies=[[{
|
171 |
+
'type':
|
172 |
+
'SeqResize',
|
173 |
+
'img_scale': [(480, 1333), (512, 1333), (544, 1333), (576, 1333),
|
174 |
+
(608, 1333), (640, 1333), (672, 1333), (704, 1333),
|
175 |
+
(736, 1333), (768, 1333), (800, 1333)],
|
176 |
+
'multiscale_mode':
|
177 |
+
'value',
|
178 |
+
'keep_ratio':
|
179 |
+
True
|
180 |
+
}],
|
181 |
+
[{
|
182 |
+
'type': 'SeqResize',
|
183 |
+
'img_scale': [(400, 1333), (500, 1333), (600, 1333)],
|
184 |
+
'multiscale_mode': 'value',
|
185 |
+
'keep_ratio': True
|
186 |
+
}, {
|
187 |
+
'type': 'SeqRandomCrop',
|
188 |
+
'crop_type': 'absolute_range',
|
189 |
+
'crop_size': (384, 600),
|
190 |
+
'allow_negative_crop': True
|
191 |
+
}, {
|
192 |
+
'type': 'SeqMaxSizePad'
|
193 |
+
}, {
|
194 |
+
'type':
|
195 |
+
'SeqResize2',
|
196 |
+
'img_scale': [(480, 1333), (512, 1333), (544, 1333),
|
197 |
+
(576, 1333), (608, 1333), (640, 1333),
|
198 |
+
(672, 1333), (704, 1333), (736, 1333),
|
199 |
+
(768, 1333), (800, 1333)],
|
200 |
+
'multiscale_mode':
|
201 |
+
'value',
|
202 |
+
'keep_ratio':
|
203 |
+
True
|
204 |
+
}]]),
|
205 |
+
dict(
|
206 |
+
type='SeqNormalize',
|
207 |
+
mean=[123.675, 116.28, 103.53],
|
208 |
+
std=[58.395, 57.12, 57.375],
|
209 |
+
to_rgb=True),
|
210 |
+
dict(type='SeqPad', size_divisor=16),
|
211 |
+
dict(type='VideoCollect', keys=['img', 'gt_bboxes', 'gt_labels']),
|
212 |
+
dict(type='ConcatVideoReferences'),
|
213 |
+
dict(type='SeqDefaultFormatBundle', ref_prefix='ref')
|
214 |
+
]
|
215 |
+
test_pipeline = [
|
216 |
+
dict(type='LoadMultiImagesFromFile'),
|
217 |
+
dict(type='SeqResize', img_scale=(1000, 600), keep_ratio=True),
|
218 |
+
dict(type='SeqRandomFlip', share_params=True, flip_ratio=0.0),
|
219 |
+
dict(
|
220 |
+
type='SeqNormalize',
|
221 |
+
mean=[123.675, 116.28, 103.53],
|
222 |
+
std=[58.395, 57.12, 57.375],
|
223 |
+
to_rgb=True),
|
224 |
+
dict(type='SeqPad', size_divisor=16),
|
225 |
+
dict(
|
226 |
+
type='VideoCollect',
|
227 |
+
keys=['img'],
|
228 |
+
meta_keys=('num_left_ref_imgs', 'frame_stride')),
|
229 |
+
dict(type='ConcatVideoReferences'),
|
230 |
+
dict(type='MultiImagesToTensor', ref_prefix='ref'),
|
231 |
+
dict(type='ToList')
|
232 |
+
]
|
233 |
+
data = dict(
|
234 |
+
samples_per_gpu=1,
|
235 |
+
workers_per_gpu=4,
|
236 |
+
train=[
|
237 |
+
dict(
|
238 |
+
type='ImagenetVIDDataset',
|
239 |
+
ann_file='data/ILSVRC/annotations/imagenet_vid_train.json',
|
240 |
+
img_prefix='data/ILSVRC/Data/VID',
|
241 |
+
ref_img_sampler=dict(
|
242 |
+
num_ref_imgs=2,
|
243 |
+
frame_range=9,
|
244 |
+
filter_key_img=True,
|
245 |
+
method='bilateral_uniform'),
|
246 |
+
pipeline=[
|
247 |
+
dict(type='LoadMultiImagesFromFile'),
|
248 |
+
dict(
|
249 |
+
type='SeqLoadAnnotations', with_bbox=True,
|
250 |
+
with_mask=False),
|
251 |
+
dict(type='SeqRandomFlip', share_params=True, flip_ratio=0.5),
|
252 |
+
dict(
|
253 |
+
type='AutoAugment',
|
254 |
+
policies=[[{
|
255 |
+
'type':
|
256 |
+
'SeqResize',
|
257 |
+
'img_scale': [(480, 1333), (512, 1333), (544, 1333),
|
258 |
+
(576, 1333), (608, 1333), (640, 1333),
|
259 |
+
(672, 1333), (704, 1333), (736, 1333),
|
260 |
+
(768, 1333), (800, 1333)],
|
261 |
+
'multiscale_mode':
|
262 |
+
'value',
|
263 |
+
'keep_ratio':
|
264 |
+
True
|
265 |
+
}],
|
266 |
+
[{
|
267 |
+
'type':
|
268 |
+
'SeqResize',
|
269 |
+
'img_scale': [(400, 1333), (500, 1333),
|
270 |
+
(600, 1333)],
|
271 |
+
'multiscale_mode':
|
272 |
+
'value',
|
273 |
+
'keep_ratio':
|
274 |
+
True
|
275 |
+
}, {
|
276 |
+
'type': 'SeqRandomCrop',
|
277 |
+
'crop_type': 'absolute_range',
|
278 |
+
'crop_size': (384, 600),
|
279 |
+
'allow_negative_crop': True
|
280 |
+
}, {
|
281 |
+
'type': 'SeqMaxSizePad'
|
282 |
+
}, {
|
283 |
+
'type':
|
284 |
+
'SeqResize2',
|
285 |
+
'img_scale': [(480, 1333), (512, 1333),
|
286 |
+
(544, 1333), (576, 1333),
|
287 |
+
(608, 1333), (640, 1333),
|
288 |
+
(672, 1333), (704, 1333),
|
289 |
+
(736, 1333), (768, 1333),
|
290 |
+
(800, 1333)],
|
291 |
+
'multiscale_mode':
|
292 |
+
'value',
|
293 |
+
'keep_ratio':
|
294 |
+
True
|
295 |
+
}]]),
|
296 |
+
dict(
|
297 |
+
type='SeqNormalize',
|
298 |
+
mean=[123.675, 116.28, 103.53],
|
299 |
+
std=[58.395, 57.12, 57.375],
|
300 |
+
to_rgb=True),
|
301 |
+
dict(type='SeqPad', size_divisor=16),
|
302 |
+
dict(
|
303 |
+
type='VideoCollect',
|
304 |
+
keys=['img', 'gt_bboxes', 'gt_labels']),
|
305 |
+
dict(type='ConcatVideoReferences'),
|
306 |
+
dict(type='SeqDefaultFormatBundle', ref_prefix='ref')
|
307 |
+
]),
|
308 |
+
dict(
|
309 |
+
type='ImagenetVIDDataset',
|
310 |
+
load_as_video=False,
|
311 |
+
ann_file='data/ILSVRC/annotations/imagenet_det_30plus1cls.json',
|
312 |
+
img_prefix='data/ILSVRC/Data/DET',
|
313 |
+
ref_img_sampler=dict(
|
314 |
+
num_ref_imgs=2,
|
315 |
+
frame_range=0,
|
316 |
+
filter_key_img=False,
|
317 |
+
method='bilateral_uniform'),
|
318 |
+
pipeline=[
|
319 |
+
dict(type='LoadMultiImagesFromFile'),
|
320 |
+
dict(
|
321 |
+
type='SeqLoadAnnotations', with_bbox=True,
|
322 |
+
with_mask=False),
|
323 |
+
dict(type='SeqRandomFlip', share_params=True, flip_ratio=0.5),
|
324 |
+
dict(
|
325 |
+
type='AutoAugment',
|
326 |
+
policies=[[{
|
327 |
+
'type':
|
328 |
+
'SeqResize',
|
329 |
+
'img_scale': [(480, 1333), (512, 1333), (544, 1333),
|
330 |
+
(576, 1333), (608, 1333), (640, 1333),
|
331 |
+
(672, 1333), (704, 1333), (736, 1333),
|
332 |
+
(768, 1333), (800, 1333)],
|
333 |
+
'multiscale_mode':
|
334 |
+
'value',
|
335 |
+
'keep_ratio':
|
336 |
+
True
|
337 |
+
}],
|
338 |
+
[{
|
339 |
+
'type':
|
340 |
+
'SeqResize',
|
341 |
+
'img_scale': [(400, 1333), (500, 1333),
|
342 |
+
(600, 1333)],
|
343 |
+
'multiscale_mode':
|
344 |
+
'value',
|
345 |
+
'keep_ratio':
|
346 |
+
True
|
347 |
+
}, {
|
348 |
+
'type': 'SeqRandomCrop',
|
349 |
+
'crop_type': 'absolute_range',
|
350 |
+
'crop_size': (384, 600),
|
351 |
+
'allow_negative_crop': True
|
352 |
+
}, {
|
353 |
+
'type': 'SeqMaxSizePad'
|
354 |
+
}, {
|
355 |
+
'type':
|
356 |
+
'SeqResize2',
|
357 |
+
'img_scale': [(480, 1333), (512, 1333),
|
358 |
+
(544, 1333), (576, 1333),
|
359 |
+
(608, 1333), (640, 1333),
|
360 |
+
(672, 1333), (704, 1333),
|
361 |
+
(736, 1333), (768, 1333),
|
362 |
+
(800, 1333)],
|
363 |
+
'multiscale_mode':
|
364 |
+
'value',
|
365 |
+
'keep_ratio':
|
366 |
+
True
|
367 |
+
}]]),
|
368 |
+
dict(
|
369 |
+
type='SeqNormalize',
|
370 |
+
mean=[123.675, 116.28, 103.53],
|
371 |
+
std=[58.395, 57.12, 57.375],
|
372 |
+
to_rgb=True),
|
373 |
+
dict(type='SeqPad', size_divisor=16),
|
374 |
+
dict(
|
375 |
+
type='VideoCollect',
|
376 |
+
keys=['img', 'gt_bboxes', 'gt_labels']),
|
377 |
+
dict(type='ConcatVideoReferences'),
|
378 |
+
dict(type='SeqDefaultFormatBundle', ref_prefix='ref')
|
379 |
+
])
|
380 |
+
],
|
381 |
+
val=dict(
|
382 |
+
type='ImagenetVIDDataset',
|
383 |
+
ann_file='data/ILSVRC/annotations/imagenet_vid_val.json',
|
384 |
+
img_prefix='data/ILSVRC/Data/VID',
|
385 |
+
ref_img_sampler=dict(
|
386 |
+
num_ref_imgs=14,
|
387 |
+
frame_range=[-7, 7],
|
388 |
+
method='test_with_adaptive_stride'),
|
389 |
+
pipeline=[
|
390 |
+
dict(type='LoadMultiImagesFromFile'),
|
391 |
+
dict(type='SeqResize', img_scale=(1000, 600), keep_ratio=True),
|
392 |
+
dict(type='SeqRandomFlip', share_params=True, flip_ratio=0.0),
|
393 |
+
dict(
|
394 |
+
type='SeqNormalize',
|
395 |
+
mean=[123.675, 116.28, 103.53],
|
396 |
+
std=[58.395, 57.12, 57.375],
|
397 |
+
to_rgb=True),
|
398 |
+
dict(type='SeqPad', size_divisor=16),
|
399 |
+
dict(
|
400 |
+
type='VideoCollect',
|
401 |
+
keys=['img'],
|
402 |
+
meta_keys=('num_left_ref_imgs', 'frame_stride')),
|
403 |
+
dict(type='ConcatVideoReferences'),
|
404 |
+
dict(type='MultiImagesToTensor', ref_prefix='ref'),
|
405 |
+
dict(type='ToList')
|
406 |
+
],
|
407 |
+
test_mode=True),
|
408 |
+
test=dict(
|
409 |
+
type='ImagenetVIDDataset',
|
410 |
+
ann_file='data/ILSVRC/annotations/imagenet_vid_val.json',
|
411 |
+
img_prefix='data/ILSVRC/Data/VID',
|
412 |
+
ref_img_sampler=dict(
|
413 |
+
num_ref_imgs=14,
|
414 |
+
frame_range=[-7, 7],
|
415 |
+
method='test_with_adaptive_stride'),
|
416 |
+
pipeline=[
|
417 |
+
dict(type='LoadMultiImagesFromFile'),
|
418 |
+
dict(type='SeqResize', img_scale=(1000, 600), keep_ratio=True),
|
419 |
+
dict(type='SeqRandomFlip', share_params=True, flip_ratio=0.0),
|
420 |
+
dict(
|
421 |
+
type='SeqNormalize',
|
422 |
+
mean=[123.675, 116.28, 103.53],
|
423 |
+
std=[58.395, 57.12, 57.375],
|
424 |
+
to_rgb=True),
|
425 |
+
dict(type='SeqPad', size_divisor=16),
|
426 |
+
dict(
|
427 |
+
type='VideoCollect',
|
428 |
+
keys=['img'],
|
429 |
+
meta_keys=('num_left_ref_imgs', 'frame_stride')),
|
430 |
+
dict(type='ConcatVideoReferences'),
|
431 |
+
dict(type='MultiImagesToTensor', ref_prefix='ref'),
|
432 |
+
dict(type='ToList')
|
433 |
+
],
|
434 |
+
test_mode=True))
|
435 |
+
total_epochs = 9
|
436 |
+
evaluation = dict(metric=['bbox'], vid_style=True, interval=9)
|
437 |
+
work_dir = './work_dirs/stpn_swint_adam_9x'
|
438 |
+
gpu_ids = range(0, 8)
|