gstaff commited on
Commit
2404758
·
1 Parent(s): 524cfe7

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.37 +/- 0.64
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85e6e6fee7ace3fc0b745531615a0dcf316ac21867c3265f1f3830cfde103fd0
3
+ size 108023
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f15787a23a0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f157879bab0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1674346031619950226,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAz3XgPk3Bs72RYRI/z3XgPk3Bs72RYRI/z3XgPk3Bs72RYRI/z3XgPk3Bs72RYRI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAidL9vgD6xr9jC6S+KeKYv5oTrL8WYgc/H1CHP2ITtj+QSLG/CGehPptNjD/NW84/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADPdeA+TcGzvZFhEj+VPIO8nDHju4aWl7zPdeA+TcGzvZFhEj+VPIO8nDHju4aWl7zPdeA+TcGzvZFhEj+VPIO8nDHju4aWl7zPdeA+TcGzvZFhEj+VPIO8nDHju4aWl7yUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.4383988 -0.08777104 0.57180125]\n [ 0.4383988 -0.08777104 0.57180125]\n [ 0.4383988 -0.08777104 0.57180125]\n [ 0.4383988 -0.08777104 0.57180125]]",
60
+ "desired_goal": "[[-0.49574688 -1.5545044 -0.32039937]\n [-1.1944019 -1.3443482 0.5288404 ]\n [ 1.0571326 1.4224665 -1.3850269 ]\n [ 0.3152392 1.0961183 1.6121765 ]]",
61
+ "observation": "[[ 0.4383988 -0.08777104 0.57180125 -0.0160201 -0.0069334 -0.01850439]\n [ 0.4383988 -0.08777104 0.57180125 -0.0160201 -0.0069334 -0.01850439]\n [ 0.4383988 -0.08777104 0.57180125 -0.0160201 -0.0069334 -0.01850439]\n [ 0.4383988 -0.08777104 0.57180125 -0.0160201 -0.0069334 -0.01850439]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAwG3FPWTLND202MA9Fp/HPVsBEzqT/bw9zdgRvtRw8738sRw+aCj7PSrYIr2t7Dk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.09640074 0.04413928 0.09416333]\n [ 0.0974714 0.00056078 0.09228053]\n [-0.14242859 -0.11886755 0.1530227 ]\n [ 0.12263566 -0.03975693 0.18156691]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0NOAQdIHA8CUhpRSlIwBbJRLMowBdJRHQKLi2mm+Cbt1fZQoaAZoCWgPQwgk06HT8676v5SGlFKUaBVLMmgWR0Ci4p+Q2dd3dX2UKGgGaAloD0MI8zl3u14aDcCUhpRSlGgVSzJoFkdAouJfZuhsZnV9lChoBmgJaA9DCH4CKEaWrAHAlIaUUpRoFUsyaBZHQKLiIqgh8pl1fZQoaAZoCWgPQwhzDp4JTVIAwJSGlFKUaBVLMmgWR0Ci47b4zrNXdX2UKGgGaAloD0MIhSLdzynIBMCUhpRSlGgVSzJoFkdAouN8FwDNhXV9lChoBmgJaA9DCO7uAbovZ/2/lIaUUpRoFUsyaBZHQKLjO+hXbM51fZQoaAZoCWgPQwg7U+i8xu4IwJSGlFKUaBVLMmgWR0Ci4v8baRISdX2UKGgGaAloD0MIVg+Yh0yZAMCUhpRSlGgVSzJoFkdAouSXdXT3I3V9lChoBmgJaA9DCJnZ5zHK8wDAlIaUUpRoFUsyaBZHQKLkXJkGzKN1fZQoaAZoCWgPQwgbL90kBiECwJSGlFKUaBVLMmgWR0Ci5BybYsd1dX2UKGgGaAloD0MIacNhaeDnBMCUhpRSlGgVSzJoFkdAouPgE6kqMHV9lChoBmgJaA9DCAiQoWMH1QHAlIaUUpRoFUsyaBZHQKLlekAxSHd1fZQoaAZoCWgPQwhgWz/9Zy0BwJSGlFKUaBVLMmgWR0Ci5T9oFmnPdX2UKGgGaAloD0MICDpa1ZJuA8CUhpRSlGgVSzJoFkdAouT/bTMJQnV9lChoBmgJaA9DCM5twr0y7/y/lIaUUpRoFUsyaBZHQKLkwpazNUx1fZQoaAZoCWgPQwg7qwX2mIj9v5SGlFKUaBVLMmgWR0Ci5lxQJokBdX2UKGgGaAloD0MIfAvrxrvjAsCUhpRSlGgVSzJoFkdAouYheeFtbnV9lChoBmgJaA9DCOSHSiNmNv6/lIaUUpRoFUsyaBZHQKLl4U9IPLB1fZQoaAZoCWgPQwj7zi9K0B8HwJSGlFKUaBVLMmgWR0Ci5aSpzcREdX2UKGgGaAloD0MIINRFCmXhBcCUhpRSlGgVSzJoFkdAoudfoTwlSnV9lChoBmgJaA9DCHbgnBGl/QLAlIaUUpRoFUsyaBZHQKLnJOE/Spl1fZQoaAZoCWgPQwhw7xr0pXcHwJSGlFKUaBVLMmgWR0Ci5uS9mHxjdX2UKGgGaAloD0MIzok9tI81DcCUhpRSlGgVSzJoFkdAouan9ehPCXV9lChoBmgJaA9DCH16bMuAUwLAlIaUUpRoFUsyaBZHQKLoRvXsgMd1fZQoaAZoCWgPQwhS8BRypR77v5SGlFKUaBVLMmgWR0Ci6AzXarWAdX2UKGgGaAloD0MIJQNAFTcu/L+UhpRSlGgVSzJoFkdAoufNeruIAXV9lChoBmgJaA9DCNiDSfHxif2/lIaUUpRoFUsyaBZHQKLnkfdyksV1fZQoaAZoCWgPQwgL0oxF0xn3v5SGlFKUaBVLMmgWR0Ci6SllkH2RdX2UKGgGaAloD0MIA7aDEfskBcCUhpRSlGgVSzJoFkdAoujuus90R3V9lChoBmgJaA9DCIs3Mo/8Qf2/lIaUUpRoFUsyaBZHQKLorrt3OfN1fZQoaAZoCWgPQwiKWS+GcsIPwJSGlFKUaBVLMmgWR0Ci6HH4fwI/dX2UKGgGaAloD0MI3Zp0WyIX+r+UhpRSlGgVSzJoFkdAouoLJW/8EXV9lChoBmgJaA9DCGK85lWddQvAlIaUUpRoFUsyaBZHQKLp0ITGo751fZQoaAZoCWgPQwgfgNQmTo4HwJSGlFKUaBVLMmgWR0Ci6ZC0ngHedX2UKGgGaAloD0MIw9hCkINSA8CUhpRSlGgVSzJoFkdAoulUJrtVrHV9lChoBmgJaA9DCHi0ccRafPi/lIaUUpRoFUsyaBZHQKLq8ZFXq7l1fZQoaAZoCWgPQwhRpPs5BTkAwJSGlFKUaBVLMmgWR0Ci6razNUwSdX2UKGgGaAloD0MIs5dtp62RBcCUhpRSlGgVSzJoFkdAoup2oJiRXHV9lChoBmgJaA9DCN3PKcjPxgDAlIaUUpRoFUsyaBZHQKLqOer+5vt1fZQoaAZoCWgPQwhbQGg9fJkMwJSGlFKUaBVLMmgWR0Ci69Ui6g/UdX2UKGgGaAloD0MIpb+XwoMmCMCUhpRSlGgVSzJoFkdAouuaPluFYnV9lChoBmgJaA9DCIY41sVtVAHAlIaUUpRoFUsyaBZHQKLrWhq0tyx1fZQoaAZoCWgPQwgUev1JfC4IwJSGlFKUaBVLMmgWR0Ci6x2/8EV4dX2UKGgGaAloD0MI8KfGSzfpAsCUhpRSlGgVSzJoFkdAouywecQRPHV9lChoBmgJaA9DCG1VEtkHWf2/lIaUUpRoFUsyaBZHQKLsdZtelbh1fZQoaAZoCWgPQwgWo6619+kVwJSGlFKUaBVLMmgWR0Ci7DVwgkkbdX2UKGgGaAloD0MICfzh57+HCMCUhpRSlGgVSzJoFkdAouv4vDgqE3V9lChoBmgJaA9DCAvRIXAkEATAlIaUUpRoFUsyaBZHQKLtqouPFNt1fZQoaAZoCWgPQwgIAI49ey4EwJSGlFKUaBVLMmgWR0Ci7W+glF+edX2UKGgGaAloD0MIMc7fhEJkDMCUhpRSlGgVSzJoFkdAou0vai9Iw3V9lChoBmgJaA9DCHlA2ZQrHBDAlIaUUpRoFUsyaBZHQKLs8ymALAp1fZQoaAZoCWgPQwimlxjL9MsCwJSGlFKUaBVLMmgWR0Ci7oqC6H0sdX2UKGgGaAloD0MIEce6uI2G+r+UhpRSlGgVSzJoFkdAou5Pp6hQFnV9lChoBmgJaA9DCK2FWWjntAHAlIaUUpRoFUsyaBZHQKLuD5ULlV91fZQoaAZoCWgPQwibr5KP3UX/v5SGlFKUaBVLMmgWR0Ci7dK+rU9ZdX2UKGgGaAloD0MIRZvj3CYcCcCUhpRSlGgVSzJoFkdAou9abnX/YXV9lChoBmgJaA9DCOwS1VsDew7AlIaUUpRoFUsyaBZHQKLvH4zJp351fZQoaAZoCWgPQwietHBZhQ3+v5SGlFKUaBVLMmgWR0Ci7t9Whh6TdX2UKGgGaAloD0MIStHKvcAs/b+UhpRSlGgVSzJoFkdAou6ieK8+R3V9lChoBmgJaA9DCHCWkuUkVAbAlIaUUpRoFUsyaBZHQKLwOn8baRJ1fZQoaAZoCWgPQwijj/mAQKcJwJSGlFKUaBVLMmgWR0Ci7/+kP+XJdX2UKGgGaAloD0MIelVntcDeD8CUhpRSlGgVSzJoFkdAou+/ezlcQnV9lChoBmgJaA9DCEeP39v0ZwfAlIaUUpRoFUsyaBZHQKLvgrxRVIZ1fZQoaAZoCWgPQwjpuBrZlZb8v5SGlFKUaBVLMmgWR0Ci8SAPuogndX2UKGgGaAloD0MIKv2Es1vLDMCUhpRSlGgVSzJoFkdAovDlh/iHZnV9lChoBmgJaA9DCA8Ni1HXugPAlIaUUpRoFUsyaBZHQKLwpW1+iJx1fZQoaAZoCWgPQwgv3Lkw0isIwJSGlFKUaBVLMmgWR0Ci8GieumrKdX2UKGgGaAloD0MI4NVyZyZY+L+UhpRSlGgVSzJoFkdAovH3wy6+WXV9lChoBmgJaA9DCM5sV+iDxQLAlIaUUpRoFUsyaBZHQKLxvOnl4kh1fZQoaAZoCWgPQwhnKy/5n7wJwJSGlFKUaBVLMmgWR0Ci8Xyyt3fRdX2UKGgGaAloD0MIoaNVLekoDMCUhpRSlGgVSzJoFkdAovFAJAt4A3V9lChoBmgJaA9DCKVPq+gPzfO/lIaUUpRoFUsyaBZHQKLy8TEBKcx1fZQoaAZoCWgPQwj0T3Cxogb/v5SGlFKUaBVLMmgWR0Ci8rZU96kZdX2UKGgGaAloD0MICAH5EipYBsCUhpRSlGgVSzJoFkdAovJ2RV6u4nV9lChoBmgJaA9DCEkrvqHweQPAlIaUUpRoFUsyaBZHQKLyOYD1XeZ1fZQoaAZoCWgPQwjUfJV87K4HwJSGlFKUaBVLMmgWR0Ci89O6ErXldX2UKGgGaAloD0MIxyk6ksu/+7+UhpRSlGgVSzJoFkdAovOY2ZRbbHV9lChoBmgJaA9DCC5Tk+ANCQDAlIaUUpRoFUsyaBZHQKLzWL876pJ1fZQoaAZoCWgPQwh5c7hWe9gGwJSGlFKUaBVLMmgWR0Ci8xw1aW5ZdX2UKGgGaAloD0MIXTXPEflOCMCUhpRSlGgVSzJoFkdAovTCQT238XV9lChoBmgJaA9DCNcVM8LbYwjAlIaUUpRoFUsyaBZHQKL0h32VVxV1fZQoaAZoCWgPQwgeVOI6xpUJwJSGlFKUaBVLMmgWR0Ci9Edi2DxtdX2UKGgGaAloD0MIByP2CaAYD8CUhpRSlGgVSzJoFkdAovQK0ngHeXV9lChoBmgJaA9DCMbBpWPOc/6/lIaUUpRoFUsyaBZHQKL1oaG5+Yt1fZQoaAZoCWgPQwhu3GJ+bqj9v5SGlFKUaBVLMmgWR0Ci9WbKzRhMdX2UKGgGaAloD0MIXhPSGoPuBMCUhpRSlGgVSzJoFkdAovUmqm0mdHV9lChoBmgJaA9DCIOFkzR/LBDAlIaUUpRoFUsyaBZHQKL06cxTKkl1fZQoaAZoCWgPQwiqZWt9kTADwJSGlFKUaBVLMmgWR0Ci9nxpUPxydX2UKGgGaAloD0MIyY/4FWtYAcCUhpRSlGgVSzJoFkdAovZBsKsuF3V9lChoBmgJaA9DCN49QPflDAvAlIaUUpRoFUsyaBZHQKL2AYSg5BF1fZQoaAZoCWgPQwib/uxHiqgEwJSGlFKUaBVLMmgWR0Ci9cSwwCbMdX2UKGgGaAloD0MIH2RZMPGHCMCUhpRSlGgVSzJoFkdAovdfPRiPQ3V9lChoBmgJaA9DCHzzGyYaZP+/lIaUUpRoFUsyaBZHQKL3JIJZ4fR1fZQoaAZoCWgPQwhvumWH+IcDwJSGlFKUaBVLMmgWR0Ci9uSGrS3LdX2UKGgGaAloD0MIar+1EyVhAMCUhpRSlGgVSzJoFkdAovan5pJwsHV9lChoBmgJaA9DCGmtaHOcmwDAlIaUUpRoFUsyaBZHQKL4QHGCI1t1fZQoaAZoCWgPQwgw1cxaCqgIwJSGlFKUaBVLMmgWR0Ci+AW+XZ5BdX2UKGgGaAloD0MItYe9UMAWBMCUhpRSlGgVSzJoFkdAovfFlyzXz3V9lChoBmgJaA9DCLR224Xm+gHAlIaUUpRoFUsyaBZHQKL3iL876pJ1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:765cdc8bf7c430e51629d8481be690f73e7bb1c5a7ff998decb1d6ec4b8c828e
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ce07f5a9d31e5640b5d6ba3ded23a7cf439763a085ccede3fdef9274620ce71
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f15787a23a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f157879bab0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674346031619950226, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAz3XgPk3Bs72RYRI/z3XgPk3Bs72RYRI/z3XgPk3Bs72RYRI/z3XgPk3Bs72RYRI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAidL9vgD6xr9jC6S+KeKYv5oTrL8WYgc/H1CHP2ITtj+QSLG/CGehPptNjD/NW84/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADPdeA+TcGzvZFhEj+VPIO8nDHju4aWl7zPdeA+TcGzvZFhEj+VPIO8nDHju4aWl7zPdeA+TcGzvZFhEj+VPIO8nDHju4aWl7zPdeA+TcGzvZFhEj+VPIO8nDHju4aWl7yUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4383988 -0.08777104 0.57180125]\n [ 0.4383988 -0.08777104 0.57180125]\n [ 0.4383988 -0.08777104 0.57180125]\n [ 0.4383988 -0.08777104 0.57180125]]", "desired_goal": "[[-0.49574688 -1.5545044 -0.32039937]\n [-1.1944019 -1.3443482 0.5288404 ]\n [ 1.0571326 1.4224665 -1.3850269 ]\n [ 0.3152392 1.0961183 1.6121765 ]]", "observation": "[[ 0.4383988 -0.08777104 0.57180125 -0.0160201 -0.0069334 -0.01850439]\n [ 0.4383988 -0.08777104 0.57180125 -0.0160201 -0.0069334 -0.01850439]\n [ 0.4383988 -0.08777104 0.57180125 -0.0160201 -0.0069334 -0.01850439]\n [ 0.4383988 -0.08777104 0.57180125 -0.0160201 -0.0069334 -0.01850439]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAwG3FPWTLND202MA9Fp/HPVsBEzqT/bw9zdgRvtRw8738sRw+aCj7PSrYIr2t7Dk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.09640074 0.04413928 0.09416333]\n [ 0.0974714 0.00056078 0.09228053]\n [-0.14242859 -0.11886755 0.1530227 ]\n [ 0.12263566 -0.03975693 0.18156691]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0NOAQdIHA8CUhpRSlIwBbJRLMowBdJRHQKLi2mm+Cbt1fZQoaAZoCWgPQwgk06HT8676v5SGlFKUaBVLMmgWR0Ci4p+Q2dd3dX2UKGgGaAloD0MI8zl3u14aDcCUhpRSlGgVSzJoFkdAouJfZuhsZnV9lChoBmgJaA9DCH4CKEaWrAHAlIaUUpRoFUsyaBZHQKLiIqgh8pl1fZQoaAZoCWgPQwhzDp4JTVIAwJSGlFKUaBVLMmgWR0Ci47b4zrNXdX2UKGgGaAloD0MIhSLdzynIBMCUhpRSlGgVSzJoFkdAouN8FwDNhXV9lChoBmgJaA9DCO7uAbovZ/2/lIaUUpRoFUsyaBZHQKLjO+hXbM51fZQoaAZoCWgPQwg7U+i8xu4IwJSGlFKUaBVLMmgWR0Ci4v8baRISdX2UKGgGaAloD0MIVg+Yh0yZAMCUhpRSlGgVSzJoFkdAouSXdXT3I3V9lChoBmgJaA9DCJnZ5zHK8wDAlIaUUpRoFUsyaBZHQKLkXJkGzKN1fZQoaAZoCWgPQwgbL90kBiECwJSGlFKUaBVLMmgWR0Ci5BybYsd1dX2UKGgGaAloD0MIacNhaeDnBMCUhpRSlGgVSzJoFkdAouPgE6kqMHV9lChoBmgJaA9DCAiQoWMH1QHAlIaUUpRoFUsyaBZHQKLlekAxSHd1fZQoaAZoCWgPQwhgWz/9Zy0BwJSGlFKUaBVLMmgWR0Ci5T9oFmnPdX2UKGgGaAloD0MICDpa1ZJuA8CUhpRSlGgVSzJoFkdAouT/bTMJQnV9lChoBmgJaA9DCM5twr0y7/y/lIaUUpRoFUsyaBZHQKLkwpazNUx1fZQoaAZoCWgPQwg7qwX2mIj9v5SGlFKUaBVLMmgWR0Ci5lxQJokBdX2UKGgGaAloD0MIfAvrxrvjAsCUhpRSlGgVSzJoFkdAouYheeFtbnV9lChoBmgJaA9DCOSHSiNmNv6/lIaUUpRoFUsyaBZHQKLl4U9IPLB1fZQoaAZoCWgPQwj7zi9K0B8HwJSGlFKUaBVLMmgWR0Ci5aSpzcREdX2UKGgGaAloD0MIINRFCmXhBcCUhpRSlGgVSzJoFkdAoudfoTwlSnV9lChoBmgJaA9DCHbgnBGl/QLAlIaUUpRoFUsyaBZHQKLnJOE/Spl1fZQoaAZoCWgPQwhw7xr0pXcHwJSGlFKUaBVLMmgWR0Ci5uS9mHxjdX2UKGgGaAloD0MIzok9tI81DcCUhpRSlGgVSzJoFkdAouan9ehPCXV9lChoBmgJaA9DCH16bMuAUwLAlIaUUpRoFUsyaBZHQKLoRvXsgMd1fZQoaAZoCWgPQwhS8BRypR77v5SGlFKUaBVLMmgWR0Ci6AzXarWAdX2UKGgGaAloD0MIJQNAFTcu/L+UhpRSlGgVSzJoFkdAoufNeruIAXV9lChoBmgJaA9DCNiDSfHxif2/lIaUUpRoFUsyaBZHQKLnkfdyksV1fZQoaAZoCWgPQwgL0oxF0xn3v5SGlFKUaBVLMmgWR0Ci6SllkH2RdX2UKGgGaAloD0MIA7aDEfskBcCUhpRSlGgVSzJoFkdAoujuus90R3V9lChoBmgJaA9DCIs3Mo/8Qf2/lIaUUpRoFUsyaBZHQKLorrt3OfN1fZQoaAZoCWgPQwiKWS+GcsIPwJSGlFKUaBVLMmgWR0Ci6HH4fwI/dX2UKGgGaAloD0MI3Zp0WyIX+r+UhpRSlGgVSzJoFkdAouoLJW/8EXV9lChoBmgJaA9DCGK85lWddQvAlIaUUpRoFUsyaBZHQKLp0ITGo751fZQoaAZoCWgPQwgfgNQmTo4HwJSGlFKUaBVLMmgWR0Ci6ZC0ngHedX2UKGgGaAloD0MIw9hCkINSA8CUhpRSlGgVSzJoFkdAoulUJrtVrHV9lChoBmgJaA9DCHi0ccRafPi/lIaUUpRoFUsyaBZHQKLq8ZFXq7l1fZQoaAZoCWgPQwhRpPs5BTkAwJSGlFKUaBVLMmgWR0Ci6razNUwSdX2UKGgGaAloD0MIs5dtp62RBcCUhpRSlGgVSzJoFkdAoup2oJiRXHV9lChoBmgJaA9DCN3PKcjPxgDAlIaUUpRoFUsyaBZHQKLqOer+5vt1fZQoaAZoCWgPQwhbQGg9fJkMwJSGlFKUaBVLMmgWR0Ci69Ui6g/UdX2UKGgGaAloD0MIpb+XwoMmCMCUhpRSlGgVSzJoFkdAouuaPluFYnV9lChoBmgJaA9DCIY41sVtVAHAlIaUUpRoFUsyaBZHQKLrWhq0tyx1fZQoaAZoCWgPQwgUev1JfC4IwJSGlFKUaBVLMmgWR0Ci6x2/8EV4dX2UKGgGaAloD0MI8KfGSzfpAsCUhpRSlGgVSzJoFkdAouywecQRPHV9lChoBmgJaA9DCG1VEtkHWf2/lIaUUpRoFUsyaBZHQKLsdZtelbh1fZQoaAZoCWgPQwgWo6619+kVwJSGlFKUaBVLMmgWR0Ci7DVwgkkbdX2UKGgGaAloD0MICfzh57+HCMCUhpRSlGgVSzJoFkdAouv4vDgqE3V9lChoBmgJaA9DCAvRIXAkEATAlIaUUpRoFUsyaBZHQKLtqouPFNt1fZQoaAZoCWgPQwgIAI49ey4EwJSGlFKUaBVLMmgWR0Ci7W+glF+edX2UKGgGaAloD0MIMc7fhEJkDMCUhpRSlGgVSzJoFkdAou0vai9Iw3V9lChoBmgJaA9DCHlA2ZQrHBDAlIaUUpRoFUsyaBZHQKLs8ymALAp1fZQoaAZoCWgPQwimlxjL9MsCwJSGlFKUaBVLMmgWR0Ci7oqC6H0sdX2UKGgGaAloD0MIEce6uI2G+r+UhpRSlGgVSzJoFkdAou5Pp6hQFnV9lChoBmgJaA9DCK2FWWjntAHAlIaUUpRoFUsyaBZHQKLuD5ULlV91fZQoaAZoCWgPQwibr5KP3UX/v5SGlFKUaBVLMmgWR0Ci7dK+rU9ZdX2UKGgGaAloD0MIRZvj3CYcCcCUhpRSlGgVSzJoFkdAou9abnX/YXV9lChoBmgJaA9DCOwS1VsDew7AlIaUUpRoFUsyaBZHQKLvH4zJp351fZQoaAZoCWgPQwietHBZhQ3+v5SGlFKUaBVLMmgWR0Ci7t9Whh6TdX2UKGgGaAloD0MIStHKvcAs/b+UhpRSlGgVSzJoFkdAou6ieK8+R3V9lChoBmgJaA9DCHCWkuUkVAbAlIaUUpRoFUsyaBZHQKLwOn8baRJ1fZQoaAZoCWgPQwijj/mAQKcJwJSGlFKUaBVLMmgWR0Ci7/+kP+XJdX2UKGgGaAloD0MIelVntcDeD8CUhpRSlGgVSzJoFkdAou+/ezlcQnV9lChoBmgJaA9DCEeP39v0ZwfAlIaUUpRoFUsyaBZHQKLvgrxRVIZ1fZQoaAZoCWgPQwjpuBrZlZb8v5SGlFKUaBVLMmgWR0Ci8SAPuogndX2UKGgGaAloD0MIKv2Es1vLDMCUhpRSlGgVSzJoFkdAovDlh/iHZnV9lChoBmgJaA9DCA8Ni1HXugPAlIaUUpRoFUsyaBZHQKLwpW1+iJx1fZQoaAZoCWgPQwgv3Lkw0isIwJSGlFKUaBVLMmgWR0Ci8GieumrKdX2UKGgGaAloD0MI4NVyZyZY+L+UhpRSlGgVSzJoFkdAovH3wy6+WXV9lChoBmgJaA9DCM5sV+iDxQLAlIaUUpRoFUsyaBZHQKLxvOnl4kh1fZQoaAZoCWgPQwhnKy/5n7wJwJSGlFKUaBVLMmgWR0Ci8Xyyt3fRdX2UKGgGaAloD0MIoaNVLekoDMCUhpRSlGgVSzJoFkdAovFAJAt4A3V9lChoBmgJaA9DCKVPq+gPzfO/lIaUUpRoFUsyaBZHQKLy8TEBKcx1fZQoaAZoCWgPQwj0T3Cxogb/v5SGlFKUaBVLMmgWR0Ci8rZU96kZdX2UKGgGaAloD0MICAH5EipYBsCUhpRSlGgVSzJoFkdAovJ2RV6u4nV9lChoBmgJaA9DCEkrvqHweQPAlIaUUpRoFUsyaBZHQKLyOYD1XeZ1fZQoaAZoCWgPQwjUfJV87K4HwJSGlFKUaBVLMmgWR0Ci89O6ErXldX2UKGgGaAloD0MIxyk6ksu/+7+UhpRSlGgVSzJoFkdAovOY2ZRbbHV9lChoBmgJaA9DCC5Tk+ANCQDAlIaUUpRoFUsyaBZHQKLzWL876pJ1fZQoaAZoCWgPQwh5c7hWe9gGwJSGlFKUaBVLMmgWR0Ci8xw1aW5ZdX2UKGgGaAloD0MIXTXPEflOCMCUhpRSlGgVSzJoFkdAovTCQT238XV9lChoBmgJaA9DCNcVM8LbYwjAlIaUUpRoFUsyaBZHQKL0h32VVxV1fZQoaAZoCWgPQwgeVOI6xpUJwJSGlFKUaBVLMmgWR0Ci9Edi2DxtdX2UKGgGaAloD0MIByP2CaAYD8CUhpRSlGgVSzJoFkdAovQK0ngHeXV9lChoBmgJaA9DCMbBpWPOc/6/lIaUUpRoFUsyaBZHQKL1oaG5+Yt1fZQoaAZoCWgPQwhu3GJ+bqj9v5SGlFKUaBVLMmgWR0Ci9WbKzRhMdX2UKGgGaAloD0MIXhPSGoPuBMCUhpRSlGgVSzJoFkdAovUmqm0mdHV9lChoBmgJaA9DCIOFkzR/LBDAlIaUUpRoFUsyaBZHQKL06cxTKkl1fZQoaAZoCWgPQwiqZWt9kTADwJSGlFKUaBVLMmgWR0Ci9nxpUPxydX2UKGgGaAloD0MIyY/4FWtYAcCUhpRSlGgVSzJoFkdAovZBsKsuF3V9lChoBmgJaA9DCN49QPflDAvAlIaUUpRoFUsyaBZHQKL2AYSg5BF1fZQoaAZoCWgPQwib/uxHiqgEwJSGlFKUaBVLMmgWR0Ci9cSwwCbMdX2UKGgGaAloD0MIH2RZMPGHCMCUhpRSlGgVSzJoFkdAovdfPRiPQ3V9lChoBmgJaA9DCHzzGyYaZP+/lIaUUpRoFUsyaBZHQKL3JIJZ4fR1fZQoaAZoCWgPQwhvumWH+IcDwJSGlFKUaBVLMmgWR0Ci9uSGrS3LdX2UKGgGaAloD0MIar+1EyVhAMCUhpRSlGgVSzJoFkdAovan5pJwsHV9lChoBmgJaA9DCGmtaHOcmwDAlIaUUpRoFUsyaBZHQKL4QHGCI1t1fZQoaAZoCWgPQwgw1cxaCqgIwJSGlFKUaBVLMmgWR0Ci+AW+XZ5BdX2UKGgGaAloD0MItYe9UMAWBMCUhpRSlGgVSzJoFkdAovfFlyzXz3V9lChoBmgJaA9DCLR224Xm+gHAlIaUUpRoFUsyaBZHQKL3iL876pJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (801 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.3650474998634308, "std_reward": 0.6441390868150845, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-22T00:47:56.503287"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e121b1480035339818f2e080af20270d08141144507eee1e8344f970a3b5356
3
+ size 3056