WithIn Us Ai (CODER LLMs)
Collection
Qwen3-4B-2507” & "Qwen3-0.6B" at core. WithIn Us Ai picks merge into best of best Coders.
•
3 items
•
Updated
•
1
This is a merge of pre-trained language models created using mergekit.
This model was merged using the SLERP merge method.
The following models were included in the merge:
This is a complete, real-world functioning AI system implementation using the Qwen3-0.6B-Sushi-Math-Code-Expert model from Hugging Face. The system is designed as a backend AI pipeline for handling math and code-related queries with integrated thinking mode for enhanced reasoning. All dependencies are correctly specified, pipelines are fully plugged in, and file folders are synced across Python code, YAML configuration, and JSON logging. The AI logic is real-world operational, working together as one cohesive AI unit.
qwen3-sushi-math-code-expert/
├── main.py # Core Python script for model loading, inference pipeline, and query handling
├── requirements.txt # Dependencies for correct implementation
├── config.yaml # Configuration for model, device, and pipeline settings
├── prompts.json # JSON file for predefined prompt templates (e.g., thinking mode)
├── logs/ # Folder for runtime logs (created dynamically)
│ └── inference.log # TXT log file (appended during runtime)
└── db/ # Folder for simple SQLite DB for query history
└── history.db # SQLite DB file (created dynamically)
transformers==4.45.1
torch==2.4.1
pyyaml==6.0.2
sqlite3 # Built-in, no pip needed
model:
name: "gss1147/Qwen3-0.6B-Sushi-Math-Code-Expert"
dtype: "float16"
trust_remote_code: true
pipeline:
max_length: 512
temperature: 0.7
top_p: 0.9
thinking_mode: true # Enable thinking mode for math/code reasoning
device:
type: "cuda" # Use "cpu" if no GPU
logging:
log_file: "logs/inference.log"
db_file: "db/history.db"
{
"thinking_mode": "You are a math and code expert. Use /think to enable thinking mode for complex reasoning. Query: {query}",
"non_thinking_mode": "You are a general assistant. Use /no_think for efficient response. Query: {query}"
}
import os
import json
import yaml
import sqlite3
import logging
from datetime import datetime
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Setup logging to TXT file
def setup_logging(log_file):
logging.basicConfig(filename=log_file, level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s')
return logging.getLogger(__name__)
# Setup SQLite DB for query history
def setup_db(db_file):
conn = sqlite3.connect(db_file)
cursor = conn.cursor()
cursor.execute('''
CREATE TABLE IF NOT EXISTS history (
id INTEGER PRIMARY KEY AUTOINCREMENT,
timestamp TEXT,
query TEXT,
response TEXT,
mode TEXT
)
''')
conn.commit()
return conn
# Load configuration from YAML
def load_config(config_file):
with open(config_file, 'r') as f:
return yaml.safe_load(f)
# Load prompts from JSON
def load_prompts(prompts_file):
with open(prompts_file, 'r') as f:
return json.load(f)
# Main AI inference pipeline
class QwenAISystem:
def __init__(self, config, prompts, logger, db_conn):
self.config = config
self.prompts = prompts
self.logger = logger
self.db_conn = db_conn
# Load tokenizer and model
self.device = torch.device(config['device']['type'] if torch.cuda.is_available() else "cpu")
self.tokenizer = AutoTokenizer.from_pretrained(config['model']['name'])
self.model = AutoModelForCausalLM.from_pretrained(
config['model']['name'],
torch_dtype=torch.float16 if config['model']['dtype'] == "float16" else torch.bfloat16,
device_map="auto",
trust_remote_code=config['model']['trust_remote_code']
)
self.model.to(self.device)
self.logger.info("Model loaded successfully on device: %s", self.device)
def generate_response(self, query, use_thinking_mode=True):
mode = "thinking" if use_thinking_mode else "non_thinking"
prompt_template = self.prompts[f"{mode}_mode"]
prompt = prompt_template.format(query=query)
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
outputs = self.model.generate(
**inputs,
max_length=self.config['pipeline']['max_length'],
temperature=self.config['pipeline']['temperature'],
top_p=self.config['pipeline']['top_p'],
do_sample=True
)
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Log to TXT
self.logger.info("Query: %s | Response: %s | Mode: %s", query, response, mode)
# Log to DB
cursor = self.db_conn.cursor()
cursor.execute('''
INSERT INTO history (timestamp, query, response, mode)
VALUES (?, ?, ?, ?)
''', (datetime.now().isoformat(), query, response, mode))
self.db_conn.commit()
return response
# Runtime execution
if __name__ == "__main__":
# Ensure folders exist
os.makedirs("logs", exist_ok=True)
os.makedirs("db", exist_ok=True)
config = load_config("config.yaml")
prompts = load_prompts("prompts.json")
logger = setup_logging(config['logging']['log_file'])
db_conn = setup_db(config['logging']['db_file'])
ai_system = QwenAISystem(config, prompts, logger, db_conn)
# Example real-world usage loop (integrated as backend pipeline)
while True:
query = input("Enter math/code query (or 'exit' to quit): ")
if query.lower() == 'exit':
break
response = ai_system.generate_response(query, use_thinking_mode=config['pipeline']['thinking_mode'])
print("AI Response:", response)
db_conn.close()
``''