Create custom_model.py
Browse files- custom_model.py +59 -0
custom_model.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoConfig, AutoModel, PretrainedConfig, XLMRobertaForSequenceClassification
|
2 |
+
from transformers.models.auto.modeling_auto import auto_class_factory
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
class CustomConfig(PretrainedConfig):
|
7 |
+
model_type = "custom_model"
|
8 |
+
|
9 |
+
def __init__(self, num_emotion_labels=18, **kwargs):
|
10 |
+
super().__init__(**kwargs)
|
11 |
+
self.num_emotion_labels = num_emotion_labels
|
12 |
+
|
13 |
+
@auto_class_factory("modeling")
|
14 |
+
class CustomModel(XLMRobertaForSequenceClassification):
|
15 |
+
config_class = CustomConfig
|
16 |
+
|
17 |
+
def __init__(self, config):
|
18 |
+
super().__init__(config)
|
19 |
+
self.num_emotion_labels = config.num_emotion_labels
|
20 |
+
self.dropout_emotion = nn.Dropout(config.hidden_dropout_prob)
|
21 |
+
self.emotion_classifier = nn.Sequential(
|
22 |
+
nn.Linear(config.hidden_size, 512),
|
23 |
+
nn.Mish(),
|
24 |
+
nn.Dropout(0.3),
|
25 |
+
nn.Linear(512, self.num_emotion_labels)
|
26 |
+
)
|
27 |
+
self._init_weights(self.emotion_classifier[0])
|
28 |
+
self._init_weights(self.emotion_classifier[3])
|
29 |
+
|
30 |
+
def _init_weights(self, module):
|
31 |
+
if isinstance(module, nn.Linear):
|
32 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
33 |
+
if module.bias is not None:
|
34 |
+
module.bias.data.zero_()
|
35 |
+
|
36 |
+
def forward(self, input_ids=None, attention_mask=None, sentiment=None, labels=None):
|
37 |
+
outputs = self.roberta(input_ids=input_ids, attention_mask=attention_mask)
|
38 |
+
sequence_output = outputs[0]
|
39 |
+
if len(sequence_output.shape) != 3:
|
40 |
+
raise ValueError(f"Expected sequence_output to have 3 dimensions, got {sequence_output.shape}")
|
41 |
+
cls_hidden_states = sequence_output[:, 0, :]
|
42 |
+
cls_hidden_states = self.dropout_emotion(cls_hidden_states)
|
43 |
+
emotion_logits = self.emotion_classifier(cls_hidden_states)
|
44 |
+
with torch.no_grad():
|
45 |
+
cls_token_state = sequence_output[:, 0, :].unsqueeze(1)
|
46 |
+
sentiment_logits = self.classifier(cls_token_state).squeeze(1)
|
47 |
+
if labels is not None:
|
48 |
+
class_weights = torch.tensor([1.0] * self.num_emotion_labels).to(labels.device)
|
49 |
+
loss_fct = nn.BCEWithLogitsLoss(pos_weight=class_weights)
|
50 |
+
loss = loss_fct(emotion_logits, labels)
|
51 |
+
return {"loss": loss, "emotion_logits": emotion_logits, "sentiment_logits": sentiment_logits}
|
52 |
+
return {"emotion_logits": emotion_logits, "sentiment_logits": sentiment_logits}
|
53 |
+
|
54 |
+
# Register the custom configuration and model
|
55 |
+
from transformers.models.auto.configuration_auto import CONFIG_MAPPING
|
56 |
+
from transformers.models.auto.modeling_auto import MODEL_MAPPING
|
57 |
+
|
58 |
+
CONFIG_MAPPING.register("custom_model", CustomConfig)
|
59 |
+
MODEL_MAPPING.register(CustomConfig, CustomModel)
|