File size: 8,662 Bytes
a00814a
 
 
 
 
 
 
 
7e197e2
 
 
 
 
 
 
 
 
 
503135a
7e197e2
3214e76
7e197e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb8f496
c8c0362
bb8f496
 
 
c8c0362
7e197e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
548277b
7e197e2
 
 
7ce85e5
bb8f496
7ce85e5
bb8f496
7e197e2
bb8f496
7e197e2
bb8f496
7e197e2
bb8f496
7e197e2
bb8f496
7e197e2
bb8f496
7ce85e5
bb8f496
548277b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
---
license: cc-by-4.0
language:
- el
metrics:
- f1
pipeline_tag: text-classification
---
# Hellenic Sentiment AI - Version 2.0

![HellenicSentimentAI Logo](https://huggingface.co/gsar78/HellenicSentimentAI/resolve/main/HellenicSentimentAI_logo.png?download=true)

## Model Description

This is the second version of Hellenic Sentiment AI.

Like the first one, it is an open-weights model and designed for **emotion** and **sentiment** classification of text in Greek language.

For Emotions, it is a based on a custom multi-label classification head which extends the previous version of the model (version 1.1).

18 diverse emotion labels are available for classification:
```Python
    emotion_labels = [
        'joy', 'trust', 'excitement', 'gratitude', 'hope', 'love', 'pride',
        'anger', 'disgust', 'fear', 'sadness', 'anxiety', 'frustration', 'guilt',
        'disappointment', 'surprise', 'anticipation', 'neutral'
    ]
```

The Sentiment polarity labels remain the same as in Version 1.1 of the model.

For reference, these are:
```Python
sentiment_labels = ['negative', 'neutral', 'positive']
```


## Model Details

- **Model Name:** Hellenic Sentiment AI
- **Model Version:** 2.0
- **Language:** Emotion classification: only Greek (Version 2.0), Sentiment polarity: Multilingual (El, En, Fr, It, Es, De, Ar) (Version 1.1)
- **Framework:** Transformers from HuggingFace
- **Max Sequence Length:** 512
- **Base Architecture:** RoBERTa
- **Training Data:** The model (version 2.0) was trained on a custom, curated (Greek language only) dataset of reviews with their respective emotions, comprising human-handpicked reviews from products, places, restaurants, etc., with a specific emphasis on Greek language texts, and labeling of the emotions was performed manually by a human.


## Production readiness

This model is a production-grade sentiment analysis solution, carefully designed and trained to deliver high-performance results in downstream applications. With its robust architecture and rigorous testing, it is ready to be deployed in real-world scenarios, providing accurate and reliable sentiment analysis capabilities for a wide range of use cases.

## Ongoing Improvement

To ensure the model remains at the forefront of sentiment analysis capabilities, it is regularly updated and fine-tuned using new data and techniques. 

This commitment to ongoing improvement enables the model to adapt to emerging trends, nuances, and complexities in language, ensuring that it continues to provide exceptional performance and accuracy in production environments.


## Usage:


For simplicity, you can run this here:
[Google Colab](https://colab.research.google.com/drive/1Hr7NCCA3VprpFL8WLpO3lKHQaUlYkF62?usp=sharing)


Alternatively, embed the following code in your application:

```python
import torch
from transformers import AutoTokenizer, AutoConfig

# Load the tokenizer and model from the local directory
model_dir = "gsar78/HellenicSentimentAI_v2"
tokenizer = AutoTokenizer.from_pretrained(model_dir)
config = AutoConfig.from_pretrained(model_dir)
model = CustomModel.from_pretrained(model_dir, config=config, num_emotion_labels=18)



# Function to predict sentiment and emotion
def predict(texts):
    # Tokenize the input texts
    inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt", max_length=512)

    # Move inputs to the same device as the model
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    inputs = {k: v.to(device) for k, v in inputs.items()}

    # Ensure the model is on the correct device
    model.to(device)
    model.eval()  # Set the model to evaluation mode

    # Clear any gradients
    model.zero_grad()

    # Get model predictions
    with torch.no_grad():
        outputs = model(**inputs)

    # Extract logits
    emotion_logits = outputs["emotion_logits"]
    sentiment_logits = outputs["sentiment_logits"]

    # Convert logits to probabilities
    emotion_probs = torch.sigmoid(emotion_logits)
    sentiment_probs = torch.softmax(sentiment_logits, dim=1)

    # Convert tensors to lists for easier handling
    emotion_probs_list = (emotion_probs * 100).tolist()[0]  # Get the first (and only) sample and convert to %
    sentiment_probs_list = (sentiment_probs * 100).tolist()[0]  # Get the first (and only) sample and convert to %

    # Define the sentiment and emotion labels
    sentiment_labels = ['negative', 'neutral', 'positive']
    emotion_labels = [
        'joy', 'trust', 'excitement', 'gratitude', 'hope', 'love', 'pride',
        'anger', 'disgust', 'fear', 'sadness', 'anxiety', 'frustration', 'guilt',
        'disappointment', 'surprise', 'anticipation', 'neutral'
    ]

    # Threshold for displaying probabilities
    threshold = 0.0

    # Map emotion probabilities to their corresponding labels
    emotion_results = {label: prob for label, prob in zip(emotion_labels, emotion_probs_list) if prob > 0.30}

    # Map sentiment probabilities to their corresponding labels
    sentiment_results = {label: prob for label, prob in zip(sentiment_labels, sentiment_probs_list) if prob > threshold}

    return emotion_results, sentiment_results

# Example usage
sample_texts = ["Απολαύσαμε μια υπέροχη βραδιά σε αυτό το εστιατόριο. "
"Το μενού ήταν πολύ καλά σχεδιασμένο και κάθε πιάτο ήταν μια γευστική έκπληξη. "
"Η εξυπηρέτηση ήταν άψογη και η ατμόσφαιρα ευχάριστη. Σίγουρα θα επιστρέψουμε για άλλη μια φορά."]
print("Text: ", sample_texts[0])
emotion_results, sentiment_results = predict(sample_texts)

print("\nSentiment probabilities (%):")
for label, prob in sentiment_results.items():
    print(f"    {label}: {prob:.2f}%")
# Print the results
print("\nEmotion probabilities (%):")
for label, prob in emotion_results.items():
    print(f"    {label}: {prob:.2f}%")



# Change the text and predict again
# Print the results
print("\n======")
print("\nNew prediction:")
sample_texts = ["Η τελευταία μας εμπειρία στο εστιατόριο αυτό δεν ήταν ιδιαίτερα θετική. "
"Αν και ο χώρος είχε μια ενδιαφέρουσα ατμόσφαιρα, το φαγητό ήταν μέτριο και η εξυπηρέτηση ήταν αργή. "
"Οι τιμές ήταν επίσης απογοητευτικές για την ποιότητα που προσφέρθηκε."]
print("Text: ", sample_texts[0])
emotion_results, sentiment_results = predict(sample_texts)

print("\nSentiment probabilities (%):")
for label, prob in sentiment_results.items():
    print(f"    {label}: {prob:.2f}%")
print("\nEmotion probabilities (%):")
for label, prob in emotion_results.items():
    print(f"    {label}: {prob:.2f}%")
```

Expected output:

```context
Text:  Απολαύσαμε μια υπέροχη βραδιά σε αυτό το εστιατόριο. Το μενού ήταν πολύ καλά σχεδιασμένο και κάθε πιάτο ήταν μια γευστική έκπληξη. Η εξυπηρέτηση ήταν άψογη και η ατμόσφαιρα ευχάριστη. Σίγουρα θα επιστρέψουμε για άλλη μια φορά.

Sentiment probabilities (%):
    negative: 17.36%
    neutral: 11.31%
    positive: 71.33%

Emotion probabilities (%):
    joy: 99.92%
    trust: 93.40%
    excitement: 73.43%
    gratitude: 97.52%
    hope: 0.33%
    love: 12.20%
    pride: 1.09%
    anticipation: 0.31%

======

New prediction:
Text:  Η τελευταία μας εμπειρία στο εστιατόριο αυτό δεν ήταν ιδιαίτερα θετική. Αν και ο χώρος είχε μια ενδιαφέρουσα ατμόσφαιρα, το φαγητό ήταν μέτριο και η εξυπηρέτηση ήταν αργή. Οι τιμές ήταν επίσης απογοητευτικές για την ποιότητα που προσφέρθηκε.

Sentiment probabilities (%):
    negative: 58.39%
    neutral: 16.34%
    positive: 25.27%

Emotion probabilities (%):
    frustration: 68.61%
    disappointment: 99.84%
    neutral: 0.75%
```


## Evaluation

Due to time constraints, there is no official benchmarking done yet. 

However, the evaluation on a test dataset is the following:

Evaluation results for emotion classification: 

'eval_f1': 0.9448,

'eval_loss': 0.0322, 

'eval_accuracy': 0.7857, 

'eval_hamming_loss': 0.0141, 

'eval_precision': 0.9785, 

'eval_recall': 0.9133, 




Enjoy!