Upload PPO pendulum trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- pendulum-ppo.zip +3 -0
- pendulum-ppo/_stable_baselines3_version +1 -0
- pendulum-ppo/data +105 -0
- pendulum-ppo/policy.optimizer.pth +3 -0
- pendulum-ppo/policy.pth +3 -0
- pendulum-ppo/pytorch_variables.pth +3 -0
- pendulum-ppo/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Pendulum-v1
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: Pendulum-v1
|
16 |
+
type: Pendulum-v1
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -167.69 +/- 55.64
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **Pendulum-v1**
|
25 |
+
This is a trained model of a **PPO** agent playing **Pendulum-v1**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a0d2f6ab1c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a0d2f6ab250>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a0d2f6ab2e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a0d2f6ab370>", "_build": "<function ActorCriticPolicy._build at 0x7a0d2f6ab400>", "forward": "<function ActorCriticPolicy.forward at 0x7a0d2f6ab490>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a0d2f6ab520>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a0d2f6ab5b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a0d2f6ab640>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a0d2f6ab6d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a0d2f6ab760>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a0d2f6ab7f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a0d2f84e900>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1715553229596802352, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAAAAAAAAAIj4fz8AVXc8LCOHvSTtfz+TgcQ8K8RgPcrvfz8BMLY8qGKyPU20fz9B0ES90MuIPcG6fT8pFAg+iPk8vpbxfz+WzKu8pC17vfzTfz+YFxa9ChYZvofzfz8w0p88m6NSPTvifz+Y4/Y8OuXEPeb/fz962ea6SEQgvqT/fz9Tnlk7cuS7PZ3+fz8MJNW7qTs0vnCSfz+tvmw9uT2OPBT/fz9Eva07fmZCOyXBfz9yWTM9EDPTPIz/fz+hDHQ7G8SaPJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsDhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwG3JyquKXOaMAWyUS8iMAXSUR0CKTfpQDV6NdX2UKGgGR7/rMbFS88LbaAdLyGgIR0CKTfmnwXqJdX2UKGgGR7/p9/jKgZjyaAdLyGgIR0CKTfkDIRywdX2UKGgGR8BtlMnVoYelaAdLyGgIR0CKTfhRZU1idX2UKGgGR8ButSA2AG0NaAdLyGgIR0CKUM18b70ndX2UKGgGR8B4DsofCAMEaAdLyGgIR0CKUMyY5T60dX2UKGgGR8Bt8m0b961LaAdLyGgIR0CKUMvcJtzkdX2UKGgGR8BuA/JkoWpIaAdLyGgIR0CKUMrz5GjLdX2UKGgGR8Bfcp/XoTwlaAdLyGgIR0CKUMo2GZeBdX2UKGgGR8BssFsrNGExaAdLyGgIR0CKUMlFc6eYdX2UKGgGR8AEF5GBnSOSaAdLyGgIR0CKUMh7E5yVdX2UKGgGR8BfQVb3XZoPaAdLyGgIR0CKUMeI2wV1dX2UKGgGR8BeQetr9EThaAdLyGgIR0CKUMbFS88LdX2UKGgGR8BeghtYSxqxaAdLyGgIR0CKUMX7+DODdX2UKGgGR8BtJlsUIsy0aAdLyGgIR0CKUMU7jkuIdX2UKGgGR8BuZyQLeANHaAdLyGgIR0CKUMRtgrpadX2UKGgGR8Bt24llbu+iaAdLyGgIR0CKUMOp84PxdX2UKGgGR8Be+aBRQ79yaAdLyGgIR0CKUMLYwqRVdX2UKGgGR8B1WWZE2HclaAdLyGgIR0CKUMIJJGvwdX2UKGgGR8BfDslolD4QaAdLyGgIR0CKUME25xzadX2UKGgGR8B1kxPLxI8RaAdLyGgIR0CKU4495hScdX2UKGgGR8BexKUzKs+3aAdLyGgIR0CKU41YyO7ydX2UKGgGR8BwspLkCFK1aAdLyGgIR0CKU4ymhufmdX2UKGgGR8B1QRMdtEXtaAdLyGgIR0CKU4vHLidbdX2UKGgGR8BfiDtw71ZlaAdLyGgIR0CKU4sJ6Y3OdX2UKGgGR8Bfci1JDmbLaAdLyGgIR0CKU4oaUA1fdX2UKGgGR8BdxgEIPbwjaAdLyGgIR0CKU4lQdjoZdX2UKGgGR8BefJx7zCk5aAdLyGgIR0CKU4hePaL5dX2UKGgGR8ABpQ79ycTbaAdLyGgIR0CKU4elKsdUdX2UKGgGR8BuFIhW5paiaAdLyGgIR0CKU4bjtG/fdX2UKGgGR8BePu4kNWluaAdLyGgIR0CKU4Yc/+sHdX2UKGgGR8Beyo593KSxaAdLyGgIR0CKU4VO9FnadX2UKGgGR8BeROYMOPNnaAdLyGgIR0CKU4SFGoaUdX2UKGgGR8BeDN7v5P/JaAdLyGgIR0CKU4O0b961dX2UKGgGR8Bee32ys0YTaAdLyGgIR0CKU4LuQZGbdX2UKGgGR8Bu9DE3sHB2aAdLyGgIR0CKU4Ieo1k2dX2UKGgGR8Bf5qC17Y03aAdLyGgIR0CKVjlBhQWOdX2UKGgGR8BfyzbeuV5baAdLyGgIR0CKVjhqj8DTdX2UKGgGR8Bdpvrv9cbBaAdLyGgIR0CKVjfMOf/WdX2UKGgGR8BdbW96C17ZaAdLyGgIR0CKVjbpu/DcdX2UKGgGR8Buobp5eJHiaAdLyGgIR0CKVjYukDZEdX2UKGgGR8Bt9N4s3AEdaAdLyGgIR0CKVjVAAyVOdX2UKGgGR7/j/4h2W6bwaAdLyGgIR0CKVjR2r4nGdX2UKGgGR8BefPFaSs8xaAdLyGgIR0CKVjOE/SpjdX2UKGgGR8B3iSLYPGyYaAdLyGgIR0CKVjLB9Cu2dX2UKGgGR8BdRsJY1YQraAdLyGgIR0CKVjICEHt4dX2UKGgGR8BsiIixFAmiaAdLyGgIR0CKVjE5QxetdX2UKGgGR7/01PepGWleaAdLyGgIR0CKVjBrN4Z/dX2UKGgGR8BeNYyGi5/caAdLyGgIR0CKVi+hXbM5dX2UKGgGR8BfT/NiYsunaAdLyGgIR0CKVi7ZFocrdX2UKGgGR8Bc4Qte2NNraAdLyGgIR0CKVi4LkS26dX2UKGgGR8BfgR//echDaAdLyGgIR0CKVi06YE4edX2UKGgGR8B2/3yI55quaAdLyGgIR0CKWQXyiEg4dX2UKGgGR8B4tQdMj/uLaAdLyGgIR0CKWQUTtb9qdX2UKGgGR8BthxikO7QLaAdLyGgIR0CKWQRjBl+WdX2UKGgGR8BtrnmzSkTIaAdLyGgIR0CKWQN/e+EidX2UKGgGR8BefYkeIVM3aAdLyGgIR0CKWQLJjlPrdX2UKGgGR8BfMpLIxQBQaAdLyGgIR0CKWQHbAUL2dX2UKGgGR7/yKmsNlRP5aAdLyGgIR0CKWQESuhbodX2UKGgGR7/3Ujopx3mnaAdLyGgIR0CKWQAjIJZ4dX2UKGgGR8BsjpGhEjPfaAdLyGgIR0CKWP9hJAdGdX2UKGgGR8Bsu1q59Vm0aAdLyGgIR0CKWP6ab4JvdX2UKGgGR8Bu93fl6qsEaAdLyGgIR0CKWP3V09yMdX2UKGgGR8B1tXhfjS5RaAdLyGgIR0CKWP0HyEtedX2UKGgGR7/kJZOi35N5aAdLyGgIR0CKWPw+dK/VdX2UKGgGR8Bex0MCtA9naAdLyGgIR0CKWPttygf2dX2UKGgGR8BfthJ2+wkgaAdLyGgIR0CKWPqk/KQrdX2UKGgGR8Bt9ga72+PBaAdLyGgIR0CKWPnW8RL9dX2UKGgGR8BfoTASFoL5aAdLyGgIR0CKW7zBAOawdX2UKGgGR8B15NwEQoTgaAdLyGgIR0CKW7vnbItEdX2UKGgGR8BuAgUDdP+GaAdLyGgIR0CKW7su3+dcdX2UKGgGR8Bd15lSS/0vaAdLyGgIR0CKW7pdrwfAdX2UKGgGR8BeJP1ct5D7aAdLyGgIR0CKW7nL7oB8dX2UKGgGR8BdZtoFmnO0aAdLyGgIR0CKW7j94u9OdX2UKGgGR8BdQUfgaWHDaAdLyGgIR0CKW7hVENONdX2UKGgGR8B1dU9C/oJRaAdLyGgIR0CKW7eLNwBHdX2UKGgGR8BfbWXkYGdJaAdLyGgIR0CKW7buc+aCdX2UKGgGR8BeNOQ2dd3TaAdLyGgIR0CKW7ZK3/gjdX2UKGgGR8BfEw9eQdS3aAdLyGgIR0CKW7YEnssydX2UKGgGR8BuErLZBcAzaAdLyGgIR0CKW7VMEidKdX2UKGgGR8BgoXjOs1baaAdLyGgIR0CKW7SGahHtdX2UKGgGR7/k1zySV4X5aAdLyGgIR0CKW7O3UhFFdX2UKGgGR8Bel0gjhUBGaAdLyGgIR0CKW7LowEhadX2UKGgGR8B3YWx+rlvIaAdLyGgIR0CKW7IzWPLgdX2UKGgGR8Benl7Uoa1kaAdLyGgIR0CKXqcT8HfNdX2UKGgGR8Bucb2exwAEaAdLyGgIR0CKXqYx+KCQdX2UKGgGR8B1po0O3DvWaAdLyGgIR0CKXqV8kUsWdX2UKGgGR8ASaY9gWrOraAdLyGgIR0CKXqSXdCVsdX2UKGgGR8BfcZ0GNaQnaAdLyGgIR0CKXqPatcOcdX2UKGgGR8BfhihJyyUtaAdLyGgIR0CKXqLronrqdX2UKGgGR8BelYSlFc6eaAdLyGgIR0CKXqI8hcJMdX2UKGgGR8BykKmk30f6aAdLyGgIR0CKXqFX7tRfdX2UKGgGR8BeLyy2QXANaAdLyGgIR0CKXqCfYjB3dX2UKGgGR8B1LTHEMspYaAdLyGgIR0CKXp/ZM+NcdX2UKGgGR8B15p85S3spaAdLyGgIR0CKXp8R+SbIdX2UKGgGR7/sw2dd3SrpaAdLyGgIR0CKXp5FgDzRdX2UKGgGR8B2Fcyj59E1aAdLyGgIR0CKXp19v0iAdX2UKGgGR8BfWsLF4s3AaAdLyGgIR0CKXpyvLX+VdX2UKGgGR7/pRZuAI6bOaAdLyGgIR0CKXpvn8sMBdX2UKGgGR8BuGadUbT+eaAdLyGgIR0CKXpsZYPoWdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVrQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AAAAQZRoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwNWy0xLiAtMS4gLTguXZSMCWhpZ2hfcmVwcpSMClsxLiAxLiA4Ll2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -8.]", "high": "[1. 1. 8.]", "low_repr": "[-1. -1. -8.]", "high_repr": "[1. 1. 8.]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWViQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAQAAAAAAAAABlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYBAAAAAAAAAAGUaBVLAYWUaBl0lFKUjAZfc2hhcGWUSwGFlIwDbG93lGgRKJYEAAAAAAAAAAAAAMCUaAtLAYWUaBl0lFKUjARoaWdolGgRKJYEAAAAAAAAAAAAAECUaAtLAYWUaBl0lFKUjAhsb3dfcmVwcpSMBC0yLjCUjAloaWdoX3JlcHKUjAMyLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True]", "bounded_above": "[ True]", "_shape": [1], "low": "[-2.]", "high": "[2.]", "low_repr": "-2.0", "high_repr": "2.0", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
pendulum-ppo.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ed2022171db6d208d6c8836f0bc21073a21a5abcf091f87e3e954c54a707676
|
3 |
+
size 138300
|
pendulum-ppo/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
pendulum-ppo/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7a0d2f6ab1c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a0d2f6ab250>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a0d2f6ab2e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a0d2f6ab370>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7a0d2f6ab400>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7a0d2f6ab490>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7a0d2f6ab520>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a0d2f6ab5b0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7a0d2f6ab640>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a0d2f6ab6d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a0d2f6ab760>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7a0d2f6ab7f0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7a0d2f84e900>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1715553229596802352,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVNQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAAAAAAAAAIj4fz8AVXc8LCOHvSTtfz+TgcQ8K8RgPcrvfz8BMLY8qGKyPU20fz9B0ES90MuIPcG6fT8pFAg+iPk8vpbxfz+WzKu8pC17vfzTfz+YFxa9ChYZvofzfz8w0p88m6NSPTvifz+Y4/Y8OuXEPeb/fz962ea6SEQgvqT/fz9Tnlk7cuS7PZ3+fz8MJNW7qTs0vnCSfz+tvmw9uT2OPBT/fz9Eva07fmZCOyXBfz9yWTM9EDPTPIz/fz+hDHQ7G8SaPJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsDhpSMAUOUdJRSlC4="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwG3JyquKXOaMAWyUS8iMAXSUR0CKTfpQDV6NdX2UKGgGR7/rMbFS88LbaAdLyGgIR0CKTfmnwXqJdX2UKGgGR7/p9/jKgZjyaAdLyGgIR0CKTfkDIRywdX2UKGgGR8BtlMnVoYelaAdLyGgIR0CKTfhRZU1idX2UKGgGR8ButSA2AG0NaAdLyGgIR0CKUM18b70ndX2UKGgGR8B4DsofCAMEaAdLyGgIR0CKUMyY5T60dX2UKGgGR8Bt8m0b961LaAdLyGgIR0CKUMvcJtzkdX2UKGgGR8BuA/JkoWpIaAdLyGgIR0CKUMrz5GjLdX2UKGgGR8Bfcp/XoTwlaAdLyGgIR0CKUMo2GZeBdX2UKGgGR8BssFsrNGExaAdLyGgIR0CKUMlFc6eYdX2UKGgGR8AEF5GBnSOSaAdLyGgIR0CKUMh7E5yVdX2UKGgGR8BfQVb3XZoPaAdLyGgIR0CKUMeI2wV1dX2UKGgGR8BeQetr9EThaAdLyGgIR0CKUMbFS88LdX2UKGgGR8BeghtYSxqxaAdLyGgIR0CKUMX7+DODdX2UKGgGR8BtJlsUIsy0aAdLyGgIR0CKUMU7jkuIdX2UKGgGR8BuZyQLeANHaAdLyGgIR0CKUMRtgrpadX2UKGgGR8Bt24llbu+iaAdLyGgIR0CKUMOp84PxdX2UKGgGR8Be+aBRQ79yaAdLyGgIR0CKUMLYwqRVdX2UKGgGR8B1WWZE2HclaAdLyGgIR0CKUMIJJGvwdX2UKGgGR8BfDslolD4QaAdLyGgIR0CKUME25xzadX2UKGgGR8B1kxPLxI8RaAdLyGgIR0CKU4495hScdX2UKGgGR8BexKUzKs+3aAdLyGgIR0CKU41YyO7ydX2UKGgGR8BwspLkCFK1aAdLyGgIR0CKU4ymhufmdX2UKGgGR8B1QRMdtEXtaAdLyGgIR0CKU4vHLidbdX2UKGgGR8BfiDtw71ZlaAdLyGgIR0CKU4sJ6Y3OdX2UKGgGR8Bfci1JDmbLaAdLyGgIR0CKU4oaUA1fdX2UKGgGR8BdxgEIPbwjaAdLyGgIR0CKU4lQdjoZdX2UKGgGR8BefJx7zCk5aAdLyGgIR0CKU4hePaL5dX2UKGgGR8ABpQ79ycTbaAdLyGgIR0CKU4elKsdUdX2UKGgGR8BuFIhW5paiaAdLyGgIR0CKU4bjtG/fdX2UKGgGR8BePu4kNWluaAdLyGgIR0CKU4Yc/+sHdX2UKGgGR8Beyo593KSxaAdLyGgIR0CKU4VO9FnadX2UKGgGR8BeROYMOPNnaAdLyGgIR0CKU4SFGoaUdX2UKGgGR8BeDN7v5P/JaAdLyGgIR0CKU4O0b961dX2UKGgGR8Bee32ys0YTaAdLyGgIR0CKU4LuQZGbdX2UKGgGR8Bu9DE3sHB2aAdLyGgIR0CKU4Ieo1k2dX2UKGgGR8Bf5qC17Y03aAdLyGgIR0CKVjlBhQWOdX2UKGgGR8BfyzbeuV5baAdLyGgIR0CKVjhqj8DTdX2UKGgGR8Bdpvrv9cbBaAdLyGgIR0CKVjfMOf/WdX2UKGgGR8BdbW96C17ZaAdLyGgIR0CKVjbpu/DcdX2UKGgGR8Buobp5eJHiaAdLyGgIR0CKVjYukDZEdX2UKGgGR8Bt9N4s3AEdaAdLyGgIR0CKVjVAAyVOdX2UKGgGR7/j/4h2W6bwaAdLyGgIR0CKVjR2r4nGdX2UKGgGR8BefPFaSs8xaAdLyGgIR0CKVjOE/SpjdX2UKGgGR8B3iSLYPGyYaAdLyGgIR0CKVjLB9Cu2dX2UKGgGR8BdRsJY1YQraAdLyGgIR0CKVjICEHt4dX2UKGgGR8BsiIixFAmiaAdLyGgIR0CKVjE5QxetdX2UKGgGR7/01PepGWleaAdLyGgIR0CKVjBrN4Z/dX2UKGgGR8BeNYyGi5/caAdLyGgIR0CKVi+hXbM5dX2UKGgGR8BfT/NiYsunaAdLyGgIR0CKVi7ZFocrdX2UKGgGR8Bc4Qte2NNraAdLyGgIR0CKVi4LkS26dX2UKGgGR8BfgR//echDaAdLyGgIR0CKVi06YE4edX2UKGgGR8B2/3yI55quaAdLyGgIR0CKWQXyiEg4dX2UKGgGR8B4tQdMj/uLaAdLyGgIR0CKWQUTtb9qdX2UKGgGR8BthxikO7QLaAdLyGgIR0CKWQRjBl+WdX2UKGgGR8BtrnmzSkTIaAdLyGgIR0CKWQN/e+EidX2UKGgGR8BefYkeIVM3aAdLyGgIR0CKWQLJjlPrdX2UKGgGR8BfMpLIxQBQaAdLyGgIR0CKWQHbAUL2dX2UKGgGR7/yKmsNlRP5aAdLyGgIR0CKWQESuhbodX2UKGgGR7/3Ujopx3mnaAdLyGgIR0CKWQAjIJZ4dX2UKGgGR8BsjpGhEjPfaAdLyGgIR0CKWP9hJAdGdX2UKGgGR8Bsu1q59Vm0aAdLyGgIR0CKWP6ab4JvdX2UKGgGR8Bu93fl6qsEaAdLyGgIR0CKWP3V09yMdX2UKGgGR8B1tXhfjS5RaAdLyGgIR0CKWP0HyEtedX2UKGgGR7/kJZOi35N5aAdLyGgIR0CKWPw+dK/VdX2UKGgGR8Bex0MCtA9naAdLyGgIR0CKWPttygf2dX2UKGgGR8BfthJ2+wkgaAdLyGgIR0CKWPqk/KQrdX2UKGgGR8Bt9ga72+PBaAdLyGgIR0CKWPnW8RL9dX2UKGgGR8BfoTASFoL5aAdLyGgIR0CKW7zBAOawdX2UKGgGR8B15NwEQoTgaAdLyGgIR0CKW7vnbItEdX2UKGgGR8BuAgUDdP+GaAdLyGgIR0CKW7su3+dcdX2UKGgGR8Bd15lSS/0vaAdLyGgIR0CKW7pdrwfAdX2UKGgGR8BeJP1ct5D7aAdLyGgIR0CKW7nL7oB8dX2UKGgGR8BdZtoFmnO0aAdLyGgIR0CKW7j94u9OdX2UKGgGR8BdQUfgaWHDaAdLyGgIR0CKW7hVENONdX2UKGgGR8B1dU9C/oJRaAdLyGgIR0CKW7eLNwBHdX2UKGgGR8BfbWXkYGdJaAdLyGgIR0CKW7buc+aCdX2UKGgGR8BeNOQ2dd3TaAdLyGgIR0CKW7ZK3/gjdX2UKGgGR8BfEw9eQdS3aAdLyGgIR0CKW7YEnssydX2UKGgGR8BuErLZBcAzaAdLyGgIR0CKW7VMEidKdX2UKGgGR8BgoXjOs1baaAdLyGgIR0CKW7SGahHtdX2UKGgGR7/k1zySV4X5aAdLyGgIR0CKW7O3UhFFdX2UKGgGR8Bel0gjhUBGaAdLyGgIR0CKW7LowEhadX2UKGgGR8B3YWx+rlvIaAdLyGgIR0CKW7IzWPLgdX2UKGgGR8Benl7Uoa1kaAdLyGgIR0CKXqcT8HfNdX2UKGgGR8Bucb2exwAEaAdLyGgIR0CKXqYx+KCQdX2UKGgGR8B1po0O3DvWaAdLyGgIR0CKXqV8kUsWdX2UKGgGR8ASaY9gWrOraAdLyGgIR0CKXqSXdCVsdX2UKGgGR8BfcZ0GNaQnaAdLyGgIR0CKXqPatcOcdX2UKGgGR8BfhihJyyUtaAdLyGgIR0CKXqLronrqdX2UKGgGR8BelYSlFc6eaAdLyGgIR0CKXqI8hcJMdX2UKGgGR8BykKmk30f6aAdLyGgIR0CKXqFX7tRfdX2UKGgGR8BeLyy2QXANaAdLyGgIR0CKXqCfYjB3dX2UKGgGR8B1LTHEMspYaAdLyGgIR0CKXp/ZM+NcdX2UKGgGR8B15p85S3spaAdLyGgIR0CKXp8R+SbIdX2UKGgGR7/sw2dd3SrpaAdLyGgIR0CKXp5FgDzRdX2UKGgGR8B2Fcyj59E1aAdLyGgIR0CKXp19v0iAdX2UKGgGR8BfWsLF4s3AaAdLyGgIR0CKXpyvLX+VdX2UKGgGR7/pRZuAI6bOaAdLyGgIR0CKXpvn8sMBdX2UKGgGR8BuGadUbT+eaAdLyGgIR0CKXpsZYPoWdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 310,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVrQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AAAAQZRoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwNWy0xLiAtMS4gLTguXZSMCWhpZ2hfcmVwcpSMClsxLiAxLiA4Ll2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True]",
|
60 |
+
"bounded_above": "[ True True True]",
|
61 |
+
"_shape": [
|
62 |
+
3
|
63 |
+
],
|
64 |
+
"low": "[-1. -1. -8.]",
|
65 |
+
"high": "[1. 1. 8.]",
|
66 |
+
"low_repr": "[-1. -1. -8.]",
|
67 |
+
"high_repr": "[1. 1. 8.]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
72 |
+
":serialized:": "gAWViQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAQAAAAAAAAABlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYBAAAAAAAAAAGUaBVLAYWUaBl0lFKUjAZfc2hhcGWUSwGFlIwDbG93lGgRKJYEAAAAAAAAAAAAAMCUaAtLAYWUaBl0lFKUjARoaWdolGgRKJYEAAAAAAAAAAAAAECUaAtLAYWUaBl0lFKUjAhsb3dfcmVwcpSMBC0yLjCUjAloaWdoX3JlcHKUjAMyLjCUjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"dtype": "float32",
|
74 |
+
"bounded_below": "[ True]",
|
75 |
+
"bounded_above": "[ True]",
|
76 |
+
"_shape": [
|
77 |
+
1
|
78 |
+
],
|
79 |
+
"low": "[-2.]",
|
80 |
+
"high": "[2.]",
|
81 |
+
"low_repr": "-2.0",
|
82 |
+
"high_repr": "2.0",
|
83 |
+
"_np_random": null
|
84 |
+
},
|
85 |
+
"n_envs": 16,
|
86 |
+
"n_steps": 2048,
|
87 |
+
"gamma": 0.99,
|
88 |
+
"gae_lambda": 0.95,
|
89 |
+
"ent_coef": 0.0,
|
90 |
+
"vf_coef": 0.5,
|
91 |
+
"max_grad_norm": 0.5,
|
92 |
+
"batch_size": 64,
|
93 |
+
"n_epochs": 10,
|
94 |
+
"clip_range": {
|
95 |
+
":type:": "<class 'function'>",
|
96 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
97 |
+
},
|
98 |
+
"clip_range_vf": null,
|
99 |
+
"normalize_advantage": true,
|
100 |
+
"target_kl": null,
|
101 |
+
"lr_schedule": {
|
102 |
+
":type:": "<class 'function'>",
|
103 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
104 |
+
}
|
105 |
+
}
|
pendulum-ppo/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:15abc64b8abf730c73327a50ed4401f1c57a73f8273a5bb96b151fc557ddf5e0
|
3 |
+
size 82401
|
pendulum-ppo/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38c4de65904cbd730c2a3ee025c3ed41fa1fe89aa862a46e0cc7d57128ed6397
|
3 |
+
size 40751
|
pendulum-ppo/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
pendulum-ppo/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.2.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (135 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -167.68818681240992, "std_reward": 55.64498176823652, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-05-12T22:49:40.448438"}
|